SECS-II

Last updated

The SECS-II (SEMI Equipment Communications Standard, Part 2), sometimes called SEMI E5, is a communication protocol used in the semiconductor industry between devices involved in manufacturing. Much like the protocols in the OSI model, SECS-II is a layer above SECS-I and HSMS. While SECS-I and HSMS define how the communications are transmitted (such as over RS-232C or Ethernet), SECS-II defines the format and content of messages that can be sent over SECS-I or HSMS.

Contents

The protocol is maintained by the SEMI organization, from which copies of the SEMI E5 standard may be obtained for a fee.

Usage

The SECS-II defines the message structure between equipment and host. Most of the SEMI E5 standard is a large library of possible messages – a few of which have redundant functionality with different message structures. Most equipment support only a restricted subset of these messages. Some equipments define custom SECS-II messages that are not part of the SEMI E5 standard.

Messages

Only a subset of the possible messages is actually required by the GEM standard. Some SECS-II message transactions may be initiated by only the host. Other SECS-II message transactions may be initiated only by an equipment. A few message transactions may be initiated by either the host or equipment. In order for a SECS-II message to be valid, it must be used by the correct party and have the correct message format (the SECS-II message structure defined by E5). The host and equipment can agree to support custom messages to implement custom features whose format is not defined in SEMI E5, but this is highly discouraged when standard message is sufficient.

The SECS-II messages are organized into categories called streams that are identified by an integer between 0 and 255. Each stream category contains specific messages, or functions, also identified by an integer between 0 and 255. A primary message is an odd-numbered function. A secondary message is the corresponding even numbered function. A request for information and the corresponding data transmission is an example of such an activity. In most transmissions when either the host or equipment sends a primary message, the response is the corresponding secondary message.

Unless the reply bit is clear, a primary message should always be responded to with the complementary secondary message. For most SECS-II messages, a secondary reply message is required. For example, if the host sends an S1, F1 (stream 1, function 1) message to request 'Are you there?', then equipment will send a reply S1, F2 message to indicate 'I am here'. Each SECS-II message exchange has a unique transaction ID number. The standards allow message interleaving where there is more than one open, concurrent transaction.

The SECS-II standard also defines lists of allowed data types including ASCII, binary, boolean, 4 and 8 byte floating points, signed and unsigned integers of byte length 1, 2, 4, or 8 and a List; a container for other data elements including other lists.

SECS-II messages are sent as structured binary data. It is a very efficient means to package information across a network without wasting bandwidth. When using the SECS-I standard, RS-232 serial communication, the message size is limited to 7995148 bytes (about 8 MB). When using the HSMS standard, TCP/IP network communication, the maximum message size is limited to 4294967295 bytes (about 4.3 GB). The structure of each standard SECS-II message is defined by the SEMI E5 SECS-II standard. A message can be a simple data element, such as a binary response or an ASCII string. A message can also be a complex list structure with multiple levels of lists in the hierarchy. The SECS-II standard limits a single element within a SECS-II message to 16777215 bytes (about 16.5 MB).

Related Research Articles

Multipurpose Internet Mail Extensions (MIME) is a standard that extends the format of email messages to support text in character sets other than ASCII, as well as attachments of audio, video, images, and application programs. Message bodies may consist of multiple parts, and header information may be specified in non-ASCII character sets. Email messages with MIME formatting are typically transmitted with standard protocols, such as the Simple Mail Transfer Protocol (SMTP), the Post Office Protocol (POP), and the Internet Message Access Protocol (IMAP).

<span class="mw-page-title-main">OSI model</span> Model of communication of seven abstraction layers

The Open Systems Interconnection (OSI) model is a reference model from the International Organization for Standardization (ISO) that "provides a common basis for the coordination of standards development for the purpose of systems interconnection." In the OSI reference model, the communications between systems are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

The Simple Mail Transfer Protocol (SMTP) is an Internet standard communication protocol for electronic mail transmission. Mail servers and other message transfer agents use SMTP to send and receive mail messages. User-level email clients typically use SMTP only for sending messages to a mail server for relaying, and typically submit outgoing email to the mail server on port 587 or 465 per RFC 8314. For retrieving messages, IMAP is standard, but proprietary servers also often implement proprietary protocols, e.g., Exchange ActiveSync.

<span class="mw-page-title-main">Endianness</span> Order of bytes in a computer word

In computing, endianness is the order in which bytes within a word of digital data are transmitted over a data communication medium or addressed in computer memory, counting only byte significance compared to earliness. Endianness is primarily expressed as big-endian (BE) or little-endian (LE), terms introduced by Danny Cohen into computer science for data ordering in an Internet Experiment Note published in 1980. The adjective endian has its origin in the writings of 18th century Anglo-Irish writer Jonathan Swift. In the 1726 novel Gulliver's Travels, he portrays the conflict between sects of Lilliputians divided into those breaking the shell of a boiled egg from the big end or from the little end. By analogy, a CPU may read a digital word big end first, or little end first.

The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a server to a client on a computer network. FTP is built on a client–server model architecture using separate control and data connections between the client and the server. FTP users may authenticate themselves with a plain-text sign-in protocol, normally in the form of a username and password, but can connect anonymously if the server is configured to allow it. For secure transmission that protects the username and password, and encrypts the content, FTP is often secured with SSL/TLS (FTPS) or replaced with SSH File Transfer Protocol (SFTP).

Abstract Syntax Notation One (ASN.1) is a standard interface description language (IDL) for defining data structures that can be serialized and deserialized in a cross-platform way. It is broadly used in telecommunications and computer networking, and especially in cryptography.

Direct Client-to-Client (DCC) is an IRC-related sub-protocol enabling peers to interconnect using an IRC server for handshaking in order to exchange files or perform non-relayed chats. Once established, a typical DCC session runs independently from the IRC server. Originally designed to be used with ircII it is now supported by many IRC clients. Some peer-to-peer clients on napster-protocol servers also have DCC send/get capability, including TekNap, SunshineUN and Lopster. A variation of the DCC protocol called SDCC, also known as DCC SCHAT supports encrypted connections. An RFC specification on the use of DCC does not exist.

<span class="mw-page-title-main">Human-readable medium and data</span> Presentation of data for humans to read

In computing, a human-readable medium or human-readable format is any encoding of data or information that can be naturally read by humans, resulting in human-readable data. It is often encoded as ASCII or Unicode text, rather than as binary data.

<span class="mw-page-title-main">Modbus</span> Serial communications protocol mainly developed for programmable logic controllers

Modbus or MODBUS is a client/server data communications protocol in the application layer. It was originally designed for use with its programmable logic controllers (PLCs), but has become a de facto standard communication protocol for communication between industrial electronic devices in a wide range of buses and networks.

The Financial Information eXchange (FIX) protocol is an electronic communications protocol initiated in 1992 for international real-time exchange of information related to securities transactions and markets. With trillions of dollars traded annually on the NASDAQ alone, financial service entities are employing direct market access (DMA) to increase their speed to financial markets. Managing the delivery of trading applications and keeping latency low increasingly requires an understanding of the FIX protocol.

Client-to-client protocol (CTCP) is a special type of communication between Internet Relay Chat (IRC) clients.

<span class="mw-page-title-main">Binary file</span> Non-human-readable computer file encoded in binary form

A binary file is a computer file that is not a text file. The term "binary file" is often used as a term meaning "non-text file". Many binary file formats contain parts that can be interpreted as text; for example, some computer document files containing formatted text, such as older Microsoft Word document files, contain the text of the document but also contain formatting information in binary form.

ISO 8583 is an international standard for financial transaction card originated interchange messaging. It is the International Organization for Standardization standard for systems that exchange electronic transactions initiated by cardholders using payment cards.

A binary-to-text encoding is encoding of data in plain text. More precisely, it is an encoding of binary data in a sequence of printable characters. These encodings are necessary for transmission of data when the communication channel does not allow binary data or is not 8-bit clean. PGP documentation uses the term "ASCII armor" for binary-to-text encoding when referring to Base64.

CANopen is a communication protocol stack and device profile specification for embedded systems used in automation. In terms of the OSI model, CANopen implements the layers above and including the network layer. The CANopen standard consists of an addressing scheme, several small communication protocols and an application layer defined by a device profile. The communication protocols have support for network management, device monitoring and communication between nodes, including a simple transport layer for message segmentation/desegmentation. The lower level protocol implementing the data link and physical layers is usually Controller Area Network (CAN), although devices using some other means of communication can also implement the CANopen device profile.

OBD-II PIDs are codes used to request data from a vehicle, used as a diagnostic tool.

The SECS/GEM is the semiconductor's equipment interface protocol for equipment-to-host data communications. In an automated fab, the interface can start and stop equipment processing, collect measurement data, change variables and select recipes for products. The SECS /GEM standards do all this in a defined way.

A communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity. The protocol defines the rules, syntax, semantics, and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

In data networking, telecommunications, and computer buses, an acknowledgment (ACK) is a signal that is passed between communicating processes, computers, or devices to signify acknowledgment, or receipt of message, as part of a communications protocol. Correspondingly an negative-acknowledgement is a signal that is sent to reject a previously received message or to indicate some kind of error. Acknowledgments and negative acknowledgments inform a sender of the receiver's state so that it can adjust its own state accordingly.

The High-Speed SECS Message Services (HSMS) protocol is a Session layer protocol for communication between production equipment and factory control systems in semiconductor factories. HSMS defines a TCP/IP based session for use with sending SECS-II messages. It is intended as a high speed alternative to the serial SECS-I protocol. HSMS is defined in the standard SEMI E37, and its subordinate standards: SEMI E37.1, and the withdrawn SEMI E37.2.

References