SEDAT

Last updated

SEDAT ("Space Environment DATa System") provides access to near-original satellite data on the space environment in order to perform analyses and queries needed for evaluation of space environment hazards.

Contents

History

The development was performed between 1999 and 2001 by the Rutherford Appleton Laboratory (RAL) and funded by the European Space Agency via its Space Environments and Effects Section.

Description

The aim of the SEDAT project is to develop a new approach to the engineering analysis of the spacecraft charged-particle environments. The project assembled a database containing a large and comprehensive set of data about that environment as measured in-situ by a number of space plasma missions. The user is able to select a set of space environment data appropriate to the engineering problem under study. The project developed a set of software tools, which can operate on the data retrieved from the SEDAT database. These tools allow the user to carry out a wide range of engineering analyses.

This approach differs from traditional space environment engineering studies. In the latter the space environment is characterised by a model that is a synthesis of previous observations. However, in SEDAT the environment is characterised directly by the observations. This approach offers several advantages to the engineering analyst:

The traditional approach would require the production, validation and dissemination of an updated model, which is a far more time-consuming activity.

The SEDAT concept foresees access to distributed datasets, capture of processing methods and openness in analysis tools.

SEDAT implementation

The implementation of SEDAT is divided into three main parts:

  1. Construction of the SEDAT database, based in the STPDF.
  2. Production of the analysis tools to be used in conjunction with the SEDAT database, based on IDL routines.
  3. Execution of four small exercises, using the SEDAT database and tools, to demonstrate that these functions operate correctly.

Four demonstrations of the SEDAT system were performed in the original study:

Related Research Articles

<span class="mw-page-title-main">Analysis</span> Process of understanding a complex topic or substance

Analysis is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle, though analysis as a formal concept is a relatively recent development.

Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to each other. The practical application of multivariate statistics to a particular problem may involve several types of univariate and multivariate analyses in order to understand the relationships between variables and their relevance to the problem being studied.

<span class="mw-page-title-main">Systems engineering</span> Interdisciplinary field of engineering

Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design, integrate, and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.

Systems analysis is "the process of studying a procedure or business to identify its goal and purposes and create systems and procedures that will efficiently achieve them". Another view sees system analysis as a problem-solving technique that breaks down a system into its component pieces, and how well those parts work and interact to accomplish their purpose.

<span class="mw-page-title-main">Meta-analysis</span> Statistical method that summarizes data from multiple sources

A meta-analysis is a statistical analysis that combines the results of multiple scientific studies. Meta-analyses can be performed when there are multiple scientific studies addressing the same question, with each individual study reporting measurements that are expected to have some degree of error. The aim then is to use approaches from statistics to derive a pooled estimate closest to the unknown common truth based on how this error is perceived. Meta-analytic results are considered the most trustworthy source of evidence by the evidence-based medicine literature.

Computer science is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. One well known subject classification system for computer science is the ACM Computing Classification System devised by the Association for Computing Machinery.

Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development involves writing and maintaining the source code, but in a broader sense, it includes all processes from the conception of the desired software through to the final manifestation of the software, typically in a planned and structured process. Software development also includes research, new development, prototyping, modification, reuse, re-engineering, maintenance, or any other activities that result in software products.

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system can be divided and allocated to different sources of uncertainty in its inputs. A related practice is uncertainty analysis, which has a greater focus on uncertainty quantification and propagation of uncertainty; ideally, uncertainty and sensitivity analysis should be run in tandem.

<span class="mw-page-title-main">Computer-aided software engineering</span>

Computer-aided software engineering (CASE) is the domain of software tools used to design and implement applications. CASE tools are similar to and were partly inspired by Computer-Aided Design (CAD) tools used for designing hardware products. CASE tools were used for developing high-quality, defect-free, and maintainable software. CASE software is often associated with methods for the development of information systems together with automated tools that can be used in the software development process.

<span class="mw-page-title-main">Business analyst</span> Person who analyses and documents a business

A business analyst (BA) is a person who processes, interprets and documents business processes, products, services and software through analysis of data. The role of a business analyst is to ensure business efficiency increases through their knowledge of both IT and business function.

Space environment is a branch of astronautics, aerospace engineering and space physics that seeks to understand and address conditions existing in space that affect the design and operation of spacecraft. A related subject, space weather, deals with dynamic processes in the solar-terrestrial system that can give rise to effects on spacecraft, but that can also affect the atmosphere, ionosphere and geomagnetic field, giving rise to several other kinds of effects on human technologies.

<span class="mw-page-title-main">Computer-aided production engineering</span>

Computer-aided production engineering (CAPE) is a relatively new and significant branch of engineering. Global manufacturing has changed the environment in which goods are produced. Meanwhile, the rapid development of electronics and communication technologies has required design and manufacturing to keep pace.

Business analysis is a professional discipline focussed on identifying business needs and determining solutions to business problems. Solutions may include a software-systems development component, process improvements, or organizational changes, and may involve extensive analysis, strategic planning and policy development. A person dedicated to carrying out these tasks within an organization is called a business analyst or BA.

<span class="mw-page-title-main">Spatial analysis</span> Formal techniques which study entities using their topological, geometric, or geographic properties

Spatial analysis or spatial statistics includes any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques, many still in their early development, using different analytic approaches and applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is the technique applied to structures at the human scale, most notably in the analysis of geographic data or transcriptomics data.

Performance engineering encompasses the techniques applied during a systems development life cycle to ensure the non-functional requirements for performance will be met. It may be alternatively referred to as systems performance engineering within systems engineering, and software performance engineering or application performance engineering within software engineering.

The Concurrent Design Facility (CDF) is the European Space Agency main assessment center for future space missions and industrial review. Located at ESTEC, ESA's technical center in Noordwijk in The Netherlands, it has been operational since early 2000.

STARMAD deals with the latest trend in the space industry is towards space missions, spacecraft, systems and products, which require quick solutions for system design and software development.

FASTRAD is a tool dedicated to the calculation of radiation effects on electronics. The tool includes a 3d modelling interface with all the capabilities required for the representation of any system. Application areas include: high energy physics and nuclear experiments, medical, accelerator and space physics studies. The software is used by radiation engineers around the world.

Gerhard Drolshagen is a German physicist at the University of Oldenburg, Germany, specializing in space environment and near-Earth objects (NEO). He has been a staff member at the European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, The Netherlands (1987–2016) and is known for his work in space environment, NEO and for the asteroid named after him: the asteroid 332733 Drolshagen.

References