SLC6A1 epileptic encephalopathy

Last updated

SLC6A1 epileptic encephalopathy is a genetic disorder characterised by the loss-of-function of one copy of the human SLC6A1 gene. SLC6A1 epileptic encephalopathy can typically manifest itself with early onset seizures and it can also be characterised by mild to severe learning disability. Not all manifestations of the conditions are present in one given patient.

Contents

Background

Research published in 2015 linked mutations on the solute carrier family 6 member 1 protein (SLC6A1) to developmental and epileptic encephalopathies. SLC6A1 is present only on 13% of genetic panel testing, so the condition is very under-diagnosed. Currently an incidence of 1 in 38,000 births is reported. [1]

Signs and symptoms

Owing to the limited number of patients diagnosed, the full extent of symptoms is not fully understood. Typically, the condition manifests itself via absence seizures, myoclonic-atonic epilepsy and mild-to-moderate learning disability. [2] In addition, speech difficulties and behavioral problems have been reported. A 2020 review of 116 cases reported developmental delay, cognitive impairment and autistic traits as widespread clinically. [3]

Diagnosis

There are a few methods used to diagnose SLC6A1 related disorders. Electroencephalograms (EEGs) can be used to detect irregular brain activity and look for signs of seizures, and MRIs can detect any changes in brain structure. [4] Once these methods have been used to diagnose epilepsy, gene panel sequencing detects the specific SLC6A1 mutation. Currently, SLC6A1 is included in many epilepsy-oriented gene panels. [2] Variants of SLC6A1 can also be analysed. [3]

Treatment

There is a clear unmet medical need for improved treatment options for SLC6A1-related disorder. [3]

Seizures

A ketogenic diet is known to be an effective treatment for some cases of otherwise intractable seizures, though no mechanism has been established. [7]

Treatments for other symptoms

Investigational/future therapies

Prognosis

Related Research Articles

<span class="mw-page-title-main">Epilepsy</span> Group of neurological disorders causing seizures

Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. An epileptic seizure is the clinical manifestation of an abnormal, excessive, and synchronized electrical discharge in the neurons. The occurrence of two or more unprovoked seizures defines epilepsy. The occurrence of just one seizure may warrant the definition in a more clinical usage where recurrence may be able to be prejudged. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical activity in the brain. These episodes can result in physical injuries, either directly, such as broken bones, or through causing accidents. In epilepsy, seizures tend to recur and may have no detectable underlying cause. Isolated seizures that are provoked by a specific cause such as poisoning are not deemed to represent epilepsy. People with epilepsy may be treated differently in various areas of the world and experience varying degrees of social stigma due to the alarming nature of their symptoms.

Anticonvulsants are a diverse group of pharmacological agents used in the treatment of epileptic seizures. Anticonvulsants are also increasingly being used in the treatment of bipolar disorder and borderline personality disorder, since many seem to act as mood stabilizers, and for the treatment of neuropathic pain. Anticonvulsants suppress the excessive rapid firing of neurons during seizures. Anticonvulsants also prevent the spread of the seizure within the brain.

Absence seizures are one of several kinds of generalized seizures. In the past, absence epilepsy was referred to as "pyknolepsy," a term derived from the Greek word "pyknos," signifying "extremely frequent" or "grouped". These seizures are sometimes referred to as petit mal seizures ; however, usage of this terminology is no longer recommended. Absence seizures are characterized by a brief loss and return of consciousness, generally not followed by a period of lethargy. Absence seizures are most common in children. They affect both sides of the brain.

<span class="mw-page-title-main">Lennox–Gastaut syndrome</span> Rare form of childhood-onset epilepsy

Lennox–Gastaut syndrome (LGS) is a complex, rare, and severe childhood-onset epilepsy syndrome. It is characterized by multiple and concurrent seizure types including tonic seizure, cognitive dysfunction, and slow spike waves on electroencephalogram (EEG), which are very abnormal. Typically, it presents in children aged 3–5 years and most of the time persists into adulthood with slight changes in the electroclinical phenotype. It has been associated with perinatal injuries, congenital infections, brain malformations, brain tumors, genetic disorders such as tuberous sclerosis and numerous gene mutations. Sometimes LGS is observed after infantile epileptic spasm syndrome. The prognosis for LGS is marked by a 5% mortality in childhood and persistent seizures into adulthood.

<span class="mw-page-title-main">Glycine encephalopathy</span> Medical condition

Glycine encephalopathy is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleavage system, an enzyme responsible for glycine catabolism. There are several forms of the disease, with varying severity of symptoms and time of onset. The symptoms are exclusively neurological in nature, and clinically this disorder is characterized by abnormally high levels of the amino acid glycine in bodily fluids and tissues, especially the cerebrospinal fluid.

Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy (SMEI), is an autosomal dominant genetic disorder which causes a catastrophic form of epilepsy, with prolonged seizures that are often triggered by hot temperatures or fever. It is very difficult to treat with anticonvulsant medications. It often begins before one year of age, with six months being the age that seizures, char­ac­ter­ized by prolonged convulsions and triggered by fever, usually begin.

Juvenile myoclonic epilepsy (JME), also known as Janz syndrome or impulsive petit mal, is a form of hereditary, idiopathic generalized epilepsy, representing 5–10% of all epilepsy cases. Typically it first presents between the ages of 12 and 18 with myoclonic seizures. These events typically occur after awakening from sleep, during the evening or when sleep-deprived. JME is also characterized by generalized tonic–clonic seizures, and a minority of patients have absence seizures. It was first described by Théodore Herpin in 1857. Understanding of the genetics of JME has been rapidly evolving since the 1990s, and over 20 chromosomal loci and multiple genes have been identified. Given the genetic and clinical heterogeneity of JME some authors have suggested that it should be thought of as a spectrum disorder.

<span class="mw-page-title-main">Generalized epilepsy</span> Epilepsy syndrome that is characterised by generalised seizures with no apparent cause

Generalized epilepsy is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain.

<span class="mw-page-title-main">CDKL5</span> Protein-coding gene in humans

CDKL5 is a gene that provides instructions for making a protein called cyclin-dependent kinase-like 5 also known as serine/threonine kinase 9 (STK9) that is essential for normal brain development. Mutations in the gene can cause deficiencies in the protein. The gene regulates neuronal morphology through cytoplasmic signaling and controlling gene expression. The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of oxygen and phosphorus atoms at specific positions. Researchers are currently working to determine which proteins are targeted by the CDKL5 protein.

<span class="mw-page-title-main">GLUT1 deficiency</span> Medical condition


GLUT1 deficiency syndrome, also known as GLUT1-DS, De Vivo disease or Glucose transporter type 1 deficiency syndrome, is an autosomal dominant genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier. Glucose Transporter Type 1 Deficiency Syndrome has an estimated birth incidence of 1 in 90,000 to 1 in 24,300. This birth incidence translates to an estimated prevalence of 3,000 to 7,000 in the U.S.

Progressive Myoclonic Epilepsies (PME) are a rare group of inherited neurodegenerative diseases characterized by myoclonus, resistance to treatment, and neurological deterioration. The cause of PME depends largely on the type of PME. Most PMEs are caused by autosomal dominant or recessive and mitochondrial mutations. The location of the mutation also affects the inheritance and treatment of PME. Diagnosing PME is difficult due to their genetic heterogeneity and the lack of a genetic mutation identified in some patients. The prognosis depends largely on the worsening symptoms and failure to respond to treatment. There is no current cure for PME and treatment focuses on managing myoclonus and seizures through antiepileptic medication (AED).

Ohtahara syndrome (OS), also known as Early Infantile Developmental & Epileptic Encephalopathy (EIDEE) is a progressive epileptic encephalopathy. The syndrome is outwardly characterized by tonic spasms and partial seizures within the first few months of life, and receives its more elaborate name from the pattern of burst activity on an electroencephalogram (EEG). It is an extremely debilitating progressive neurological disorder, involving intractable seizures and severe intellectual disabilities. No single cause has been identified, although in many cases structural brain damage is present.

Myoclonic astatic epilepsy (MAE), also known as myoclonic atonic epilepsy or Doose syndrome, and renamed "Epilepsy with myoclonic-atonic seizures" in the ILAE 2017 classification, is a generalized idiopathic epilepsy. It is characterized by the development of myoclonic seizures and/or myoclonic astatic seizures. Some of the common monogenic causes include mutations in the genes SLC6A1 (3p25.3),CHD2 (15q26.1), AP2M1 (10q23.2).

Epilepsy-intellectual disability in females also known as PCDH19 gene-related epilepsy or epileptic encephalopathy, early infantile, 9 (EIEE9), is a rare type of epilepsy that affects predominantly females and is characterized by clusters of brief seizures, which start in infancy or early childhood, and is occasionally accompanied by varying degrees of cognitive impairment. The striking pattern of onset seizures at a young age, genetic testing and laboratory results, potential developmental delays or developmental regression and associated disorders, eases diagnosis.

Febrile infection-related epilepsy syndrome (FIRES), is onset of severe seizures following a febrile illness in someone who was previously healthy. The seizures may initially be focal; however, often become tonic-clonic. Complications often include intellectual disability, behavioral problems, and ongoing seizures.

An epilepsy syndrome is defined as "a characteristic cluster of clinical and Electroencephalography (EEG) features, often supported by specific etiological findings ."

SYNGAP1-related intellectual disability is a monogenetic developmental and epileptic encephalopathy that affects the central nervous system. Symptoms include intellectual disability, epilepsy, autism, sensory processing deficits, hypotonia and unstable gait.

CDKL5 deficiency disorder (CDD) is a rare genetic disorder caused by pathogenic variants in the gene CDKL5.

SLC13A5 citrate transporter disorder, or SLC13A5 Epilepsy, is a rare genetic spectrum disorder that presents with neurological symptoms. Symptoms include severe seizures, ataxia, dystonia, teeth hypoplasia, poor communication skills, difficulty standing or walking, as well as developmental delay. Other names associated with SLC13A5 Epilepsy include SLC13A5 Citrate Transporter Disorder, Citrate Transporter Disorder, SLC13A5 Deficiency, Early Infantile Epilepsy Encephalopathy 25 (EIEE25), Developmental Epilepsy Encephalopathy 25 (DEE25), and Kohlschutter-Tonz Syndrome (non-ROGDI).

TRPM3-related neurodevelopmental disorder is a monogenetic developmental and epileptic encephalopathy that affects the central nervous system. The broad phenotype includes global developmental delay, intellectual disability, epilepsy, musculoskeletal anomalies, altered pain perception, ataxia, hypotonia, nystagmus, and cerebellar atrophy.

References

  1. Johannesen, Katrine M.; Gardella, Elena; Linnankivi, Tarja; Courage, Carolina; de Saint Martin, Anne; Lehesjoki, Anna-Elina; Mignot, Cyril; Afenjar, Alexandra; Lesca, Gaetan; Abi-Warde, Marie-Thérèse; Chelly, Jamel; Piton, Amélie; Merritt, J. Lawrence; Rodan, Lance H.; Tan, Wen-Hann; Bird, Lynne M.; Nespeca, Mark; Gleeson, Joseph G.; Yoo, Yongjin; Choi, Murim; Chae, Jong-Hee; Czapansky-Beilman, Desiree; Reichert, Sara Chadwick; Pendziwiat, Manuela; Verhoeven, Judith S.; Schelhaas, Helenius J.; Devinsky, Orrin; Christensen, Jakob; Specchio, Nicola; Trivisano, Marina; Weber, Yvonne G.; Nava, Caroline; Keren, Boris; Doummar, Diane; Schaefer, Elise; Hopkins, Sarah; Dubbs, Holly; Shaw, Jessica E.; Pisani, Laura; Myers, Candace T.; Tang, Sha; Tang, Shan; Pal, Deb K.; Millichap, John J.; Carvill, Gemma L.; Helbig, Kathrine L.; Mecarelli, Oriano; Striano, Pasquale; Helbig, Ingo; Rubboli, Guido; Mefford, Heather C.; Møller, Rikke S. (February 2018). "Defining the phenotypic spectrum of SLC6A1 mutations". Epilepsia. 59 (2): 389–402. doi:10.1111/epi.13986. PMC   7677605 . PMID   33241211.
  2. 1 2 3 "SLC6A1 Epileptic Encephalopathy". NORD (National Organization for Rare Disorders).
  3. 1 2 3 4 5 6 Goodspeed, Kimberly; Pérez-Palma, Eduardo; Iqbal, Sumaiya; Cooper, Dominique; Scimemi, Annalisa; Johannesen, Katrine M; Stefanski, Arthur; Demarest, Scott; Helbig, Katherine L; Kang, Jingqiong; Shaffo, Frances C; Prentice, Brandon; Brownstein, Catherine A; Lim, Byungchan; Helbig, Ingo; De Los Reyes, Emily; McKnight, Dianalee; Crunelli, Vincenzo; Campbell, Arthur J; Møller, Rikke S; Freed, Amber; Lal, Dennis (1 July 2020). "Current knowledge of SLC6A1-related neurodevelopmental disorders". Brain Communications. 2 (2): fcaa170. doi:10.1093/braincomms/fcaa170. PMC   7677605 . PMID   33241211.
  4. "Parent and Family Scientific Overview". SLC6A1 Connect. 19 March 2022.
  5. Poukas, VS; Pollard, JR; Anderson, CT (August 2011). "Rescue therapies for seizures". Current Neurology and Neuroscience Reports. 11 (4): 418–22. doi:10.1007/s11910-011-0207-x. PMID   21509498. S2CID   20170316.
  6. 1 2 3 Philadelphia, The Children's Hospital of (13 May 2020). "SLC6A1-Related Disorders". www.chop.edu.
  7. Palmer, S; Towne, MC; Pearl, PL; Pelletier, RC; Genetti, CA; Shi, J; Beggs, AH; Agrawal, PB; Brownstein, CA (November 2016). "SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures". Pediatric Neurology. 64: 77–79. doi:10.1016/j.pediatrneurol.2016.07.012. PMC   5223550 . PMID   27600546.