SPEARpesticides (Species At Risk) is a trait based biological indicator system for streams which quantitatively links pesticide contamination to the composition of macroinvertebrate communities. [1] The approach uses species traits that characterize the ecological requirements posed by pesticide contamination in running waters. Therefore, it is highly specific and only slightly influenced by other environmental factors. [2] SPEARpesticides is linked to the quality classes of the EU Water Framework Directive (WFD) [3]
SPEARpesticides has been first developed for Central Germany [1] and updated. [4] SPEARpesticides was adapted and validated for streams and mesocosms worldwide and provides the first ecotoxicological approach to specifically determine the ecological effects of pesticides on aquatic invertebrate communities. Denmark, [5] [6] Finland, [6] France, [6] Germany, [1] [6] [7] Switzerland, Australia [8] [9] Russia [10] Mesocosms [11]
SPEARpesticides estimates pesticide effects and contamination. The calculation is based on monitoring data of invertebrate communities as ascertained for the EU Water Framework Directive (WFD). A simplified version of SPEARpesticides is included in the ASTERICS software for assessing the ecological quality of rivers. A detailed analysis is enabled by the free SPEAR Calculator. The SPEAR Calculator provides most recent information on species traits and allows specific user settings. The SPEARpesticides index is computed as relative abundance of vulnerable 'SPecies At Risk' (SPEAR) to be affected by pesticides. Relevant species traits comprises the physiological sensitivity towards pesticides, generation time, migration ability and exposure probability. The indicator value of SPEARpesticides at a sampling site is calculated as follows:
with n = number of taxa; xi = abundance of taxon i; y = 1 if taxon i is classified as SPEAR-sensitive; y = 0 if taxon i is classified as SPEAR-insensitive.
An application is available for the calculation. Web address of SPEAR calculator
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). Sometimes the word is more or less synonymous with poisoning in everyday usage.
Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.
Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic, lotic and wetlands. Freshwater ecosystems contain 41% of the world's known fish species.
Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.
A bioindicator is any species or group of species whose function, population, or status can reveal the qualitative status of the environment. The most common indicator species are animals. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot.
Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology.
Aquatic biomonitoring is the science of inferring the ecological condition of rivers, lakes, streams, and wetlands by examining the organisms that live there. While aquatic biomonitoring is the most common form of biomonitoring, any ecosystem can be studied in this manner.
Neuston, also called pleuston, are organisms that live at the surface of a body of water, such as an ocean, estuary, lake, river, or pond. Neuston can live on top of the water surface or may be attached to the underside of the water surface. They may also exist in the surface microlayer that forms between the top side and the underside. Neuston have been defined as "organisms living at the air/water interface of freshwater, estuarine, and marine habitats or referring to the biota on or directly below the water’s surface layer."
Macrobenthos consists of the organisms that live at the bottom of a water column and are visible to the naked eye. In some classification schemes, these organisms are larger than 1 mm; in another, the smallest dimension must be at least 0.5 mm. They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.
The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.
A mesocosm is any outdoor experimental system that examines the natural environment under controlled conditions. In this way mesocosm studies provide a link between field surveys and highly controlled laboratory experiments.
Pollution-induced community tolerance (PICT) is an approach to measuring the response of pollution-induced selective pressures on a community. It is an eco-toxicological tool that approaches community tolerance to pollution from a holistic standpoint. Community Tolerance can increase in one of three ways: physical adaptations or phenotypic plasticity, selection of favorable genotypes, and the replacement of sensitive species by tolerant species in a community.
Toxicodynamics, termed pharmacodynamics in pharmacology, describes the dynamic interactions of a toxicant with a biological target and its biological effects. A biological target, also known as the site of action, can be binding proteins, ion channels, DNA, or a variety of other receptors. When a toxicant enters an organism, it can interact with these receptors and produce structural or functional alterations. The mechanism of action of the toxicant, as determined by a toxicant’s chemical properties, will determine what receptors are targeted and the overall toxic effect at the cellular level and organismal level.
Energy, nutrients, and contaminants derived from aquatic ecosystems and transferred to terrestrial ecosystems are termed aquatic-terrestrial subsidies or, more simply, aquatic subsidies. Common examples of aquatic subsidies include organisms that move across habitat boundaries and deposit their nutrients as they decompose in terrestrial habitats or are consumed by terrestrial predators, such as spiders, lizards, birds, and bats. Aquatic insects that develop within streams and lakes before emerging as winged adults and moving to terrestrial habitats contribute to aquatic subsidies. Fish removed from aquatic ecosystems by terrestrial predators are another important example. Conversely, the flow of energy and nutrients from terrestrial ecosystems to aquatic ecosystems are considered terrestrial subsidies; both aquatic subsidies and terrestrial subsidies are types of cross-boundary subsidies. Energy and nutrients are derived from outside the ecosystem where they are ultimately consumed.
An early life stage (ELS) test is a chronic toxicity test using sensitive early life stages like embryos or larvae to predict the effects of toxicants on organisms. ELS tests were developed to be quicker and more cost-efficient than full life-cycle tests, taking on average 1–5 months to complete compared to 6–12 months for a life-cycle test. They are commonly used in aquatic toxicology, particularly with fish. Growth and survival are the typically measured endpoints, for which a Maximum Acceptable Toxicant Concentration (MATC) can be estimated. ELS tests allow for the testing of fish species that otherwise could not be studied due to length of life, spawning requirements, or size. ELS tests are used as part of environmental risk assessments by regulatory agencies including the U.S. Environmental Protection Agency (EPA) and Environment Canada, as well as the Organisation for Economic Co-operation and Development (OECD).
Macroinvertebrate Community Index (MCI) is an index used in New Zealand to measure the water quality of fresh water streams. The presence or lack of macroinvertebrates such as insects, worms and snails in a river or stream can give a biological indicator on the health of that waterway. The MCI assigns a number to each species of macroinvertebrate based on the sensitivity of that species to pollution. The index then calculates an average score. A higher score on the MCI generally indicates a more healthy stream.
DNA barcoding is an alternative method to the traditional morphological taxonomic classification, and has frequently been used to identify species of aquatic macroinvertebrates. Many are crucial indicator organisms in the bioassessment of freshwater and marine ecosystems.
Freshwater salinization is the process of salty runoff contaminating freshwater ecosystems, which can harm aquatic species in certain quantities and contaminate drinking water. It is often measured by the increased amount of dissolved minerals than what is considered usual for the area being observed. Naturally occurring salinization is referred to as primary salinization; this includes rainfall, rock weathering, seawater intrusion, and aerosol deposits. Human-induced salinization is termed as secondary salinization, with the use of de-icing road salts as the most common form of runoff. Approximately 37% of the drainage in the United States has been affected by salinization in the past century. The EPA has defined two thresholds for healthy salinity levels in freshwater ecosystems: 230 mg/L Cl− for average salinity levels and 860 mg/L Cl− for acute inputs.
Aquatic macroinvertebrates are insects in their nymph and larval stages, snails, worms, crayfish, and clams that spend at least part of their lives in water. These insects play a large role in freshwater ecosystems by recycling nutrients as well as providing food to higher trophic levels.
Jessica Hua is an associate professor in the Department of Biological Sciences at Binghamton University, NY. In addition Hua is the Director for the Center for Integrated Watershed Studies at Binghamton University which focuses on understanding watersheds and the human influences on them through research. She is a herpetologist and oversees her own lab, The Hua Lab, where they focus on ecological interactions, evolutionary processes and ecological-evolutionary feedbacks. Hua's background has led to her appreciation of education with coming from a refugee family who "epitomizes the concept of the American Dream". Her research aims to help others gain opportunities while also establishing a lab that is inclusive and diverse. Hua also enjoys a variety of sports and plays disc golf professionally since 2016.