STANAG 4626

Last updated

STANAG 4626 is a NATO Standardization Agreement which define a set of Open Architecture Standards for Avionics Architecture, particularly in the field of Integrated Modular Avionics. The purpose of this standard is to establish uniform requirements for the architecture for Integrated Modular Avionics (IMA) systems as defined by the ASAAC program. A reference implementation is on SourceForge under an Apache license.

Contents

History

This STANAG was proposed by the UK Ministry of Defence, and originated from the ASAAC effort. As for ASAAC, many major European Avionics companies participate in its definition, such as:

See also


Related Research Articles

Avionics Electronic systems used on aircraft, artificial satellites, and spacecraft

Avionics are the electronic systems used on aircraft, artificial satellites, and spacecraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

Bus (computing) System that transfers data between components within a computer

In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.

In NATO, a Standardization Agreement defines processes, procedures, terms, and conditions for common military or technical procedures or equipment between the member countries of the alliance. Each NATO state ratifies a STANAG and implements it within their own military. The purpose is to provide common operational and administrative procedures and logistics, so one member nation's military may use the stores and support of another member's military. STANAGs also form the basis for technical interoperability between a wide variety of communication and information systems (CIS) essential for NATO and Allied operations. The Allied Data Publication 34 (ADatP-34) NATO Interoperability Standards and Profiles which is covered by STANAG 5524, maintains a catalogue of relevant information and communication technology standards.

A line-replaceable unit (LRU), lower line-replaceable unit (LLRU), line-replaceable component (LRC), or line-replaceable item (LRI) is a modular component of an airplane, ship or spacecraft that is designed to be replaced quickly at an operating location. The different lines (distances) are essential for logistics planning and operation. An LRU is usually a sealed unit such as a radio or other auxiliary equipment. LRUs are typically assigned logistics control numbers (LCNs) or work unit codes (WUCs) to manage logistics operations.

Aeronautical Radio, Incorporated (ARINC), established in 1929, was a major provider of transport communications and systems engineering solutions for eight industries: aviation, airports, defense, government, healthcare, networks, security, and transportation. ARINC had installed computer data networks in police cars and railroad cars and also maintains the standards for line-replaceable units.

Joint Architecture for Unmanned Systems (JAUS), formerly known as Joint Architecture for Unmanned Ground Systems (JAUGS), was originally an initiative started in 1998 by the United States Department of Defense to develop an open architecture for the domain of unmanned systems.

Rail Integration System

Rail interface system or rail integration system is a generic term for a standardized rail system for attaching accessories to small firearms such as pistols, rifles and light machine guns. Such accessories commonly include tactical lights, laser aiming modules, forward hand grips for improving weapon handling, telescopic sights for long-range targets, and reflex sights/red-dot sights for short/medium-ranged targets, back-up iron sight, bipods/tripods, and bayonets.

GE Aviation Systems is an American aerospace engineering, aircraft engine and aircraft parts manufacturer.

The Cockpit display systems provides the visible portion of the Human Machine Interface (HMI) by which aircrew manage the modern Glass cockpit and thus interface with the aircraft avionics.

Integrated modular avionics (IMA) are real-time computer network airborne systems. This network consists of a number of computing modules capable of supporting numerous applications of differing criticality levels.

Lynx Software Technologies, Inc. is a San Jose, California software company founded in 1988. Lynx specializes in secure virtualization and open, reliable, certifiable real-time operating systems (RTOSes). Originally known as Lynx Real-Time Systems, the company changed its name to LynuxWorks in 2000 after acquiring, and merging with, ISDCorp, an embedded systems company with a strong Linux background. In May 2014, the company changed its name to Lynx Software Technologies.

ARINC 653 is a software specification for space and time partitioning in safety-critical avionics real-time operating systems (RTOS). It allows the hosting of multiple applications of different software levels on the same hardware in the context of an Integrated Modular Avionics architecture.

Allied Standards Avionics Architecture Council, or ASAAC, is an effort to define and validate a set of Open Architecture Standards for Avionics Architecture, particularly in the field of Integrated Modular Avionics.

STANAG 3350 is a NATO analog video Standardization Agreement for military aircraft avionics.

The Time-Triggered Ethernet standard defines a fault-tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks, and outlines mechanisms required for synchronous time-triggered packet switching for critical integrated applications, IMA and integrated modular architectures. SAE International has released SAE AS6802 in November 2011.

The enhanced avionics system is an integrated modular avionics suite and cockpit display system used on Dassault Falcon business jets since Falcon 900EX, and later used in other newer Falcon aircraft such as Falcon 2000EX and Falcon 7X.

The Open Group Future Airborne Capability Environment was formed in 2010 to define an open avionics environment for all military airborne platform types. Today, it is a real-time software-focused professional group made up of industry suppliers, customers, academia, and users. The FACE approach is a government-industry software standard and business strategy for acquisition of affordable software systems that promotes innovation and rapid integration of portable capabilities across programs. The FACE Consortium provides a vendor-neutral forum for industry and government to work together to develop and consolidate the open standards, best practices, guidance documents, and business strategy necessary to result in:

AC 25.1309–1 is an FAA Advisory Circular (AC) that describes acceptable means for showing compliance with the airworthiness requirements of § 25.1309 of the Federal Aviation Regulations. The present unreleased but working draft of AC 25.1309–1 is the Aviation Rulemaking Advisory Committee recommended revision B-Arsenal Draft (2002); the present released version is A (1988). The FAA and EASA have accepted proposals by type certificate applicants to use the Arsenal Draft on recent development programs.

European Component Oriented Architecture (ECOA) is an open specification for a software framework for mission system software comprising components that are both real-time and service-oriented.

DO-297, Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations is one of the primary document by which certification authorities such as the FAA and EASA approve IMA systems for flight. The FAA Advisory Circular (AC) 20-170 refers to DO-297.