Salicylate synthase

Last updated

Salicylate synthase is an enzyme that catalyzes the chemical reaction:

chorismatesalicylic acid

MbtI is the responsible enzyme from Mycobacterium tuberculosis . [1]

Related Research Articles

<span class="mw-page-title-main">Pyrazinamide</span> Medication

Pyrazinamide is a medication used to treat tuberculosis. For active tuberculosis, it is often used with rifampicin, isoniazid, and either streptomycin or ethambutol. It is not generally recommended for the treatment of latent tuberculosis. It is taken by mouth.

Mycolic acids are long fatty acids found in the cell walls of the Mycolata taxon, a group of bacteria that includes Mycobacterium tuberculosis, the causative agent of the disease tuberculosis. They form the major component of the cell wall of mycolata species. Despite their name, mycolic acids have no biological link to fungi; the name arises from the filamentous appearance their presence gives mycolata under high magnification. The presence of mycolic acids in the cell wall also gives mycolata a distinct gross morphological trait known as "cording". Mycolic acids were first isolated by Stodola et al. in 1938 from an extract of M. tuberculosis.

<span class="mw-page-title-main">Inositol-3-phosphate synthase</span>

In enzymology, an inositol-3-phosphate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Isocitrate lyase</span>

Isocitrate lyase, or ICL, is an enzyme in the glyoxylate cycle that catalyzes the cleavage of isocitrate to succinate and glyoxylate. Together with malate synthase, it bypasses the two decarboxylation steps of the tricarboxylic acid cycle and is used by bacteria, fungi, and plants.

<span class="mw-page-title-main">Naphthoate synthase</span>

The enzyme 1,4-dihydroxy-2-naphthoyl-CoA synthase catalyzes the sixth step in the biosynthesis of phylloquinone and menaquinone, the two forms of vitamin K. In E. coli, 1,4-dihydroxy-2-naphthoyl-CoA synthase, formerly known as naphthoate synthase, is encoded by menB and uses O-succinylbenzoyl-CoA as a substrate and converts it to 1,4-dihydroxy-2-naphthoyl-CoA.

<span class="mw-page-title-main">Chorismate synthase</span>

The enzyme chorismate synthase catalyzes the chemical reaction

In enzymology, a 2-isopropylmalate synthase (EC 2.3.3.13) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Beta-ketoacyl-ACP synthase III</span> Enzyme

In enzymology, a β-ketoacyl-[acyl-carrier-protein] synthase III (EC 2.3.1.180) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a mycocerosate synthase (EC 2.3.1.111) is an enzyme that catalyzes the chemical reaction

In enzymology, a Z-farnesyl diphosphate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Shikimate kinase</span>

Shikimate kinase (EC 2.7.1.71) is an enzyme that catalyzes the ATP-dependent phosphorylation of shikimate to form shikimate 3-phosphate. This reaction is the fifth step of the shikimate pathway, which is used by plants and bacteria to synthesize the common precursor of aromatic amino acids and secondary metabolites. The systematic name of this enzyme class is ATP:shikimate 3-phosphotransferase. Other names in common use include shikimate kinase (phosphorylating), and shikimate kinase II.

3-Deoxy-<small>D</small>-<i>arabino</i>-heptulosonic acid 7-phosphate Chemical compound

3-Deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) is a 7-carbon ulonic acid. This compound is found in the shikimic acid biosynthesis pathway and is an intermediate in the production of aromatic amino acids.

Mycothiol synthase is an enzyme with systematic name acetyl-CoA:desacetylmycothiol O-acetyltransferase. This enzyme catalyses the following chemical reaction

Decaprenyl-phosphate phosphoribosyltransferase is an enzyme with systematic name trans,octacis-decaprenylphospho-beta-D-ribofuranose 5-phosphate:diphosphate phospho-alpha-D-ribosyltransferase. This enzyme catalyses the following chemical reaction

Trans,polycis-decaprenyl diphosphate synthase is an enzyme with systematic name (2Z,6E)-farnesyl-diphosphate:isopentenyl-diphosphate farnesylcistransferase . This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Tuberculosinol synthase</span>

Tuberculosinol synthase (EC 3.1.7.8, Rv3378c) is an enzyme with systematic name tuberculosinyl diphosphate diphosphohydrolase (tuberculosinol forming). This enzyme catalyses the following chemical reaction

Isotuberculosinol synthase (EC 3.1.7.9, Rv3378c) is an enzyme with systematic name tuberculosinyl diphosphate diphosphohydrolase (isotuberculosinol forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Isochorismate lyase</span>

Isochorismate pyruvate lyase is an enzyme responsible for catalyzing part of the pathway involved in the formation of salicylic acid. More specifically, IPL will use isochorismate as a substrate and convert it into salicylate and pyruvate. IPL is a PchB enzyme originating from the pchB gene in Pseudomonas aeruginosa.

Halimadienyl-diphosphate synthase is an enzyme with systematic name halima-5,13-dien-15-yl-diphosphate lyase (decyclizing). This enzyme catalyses the following chemical reaction

References

  1. Zwahlen, Jacque; Kolappan, Subramaniapillai; Zhou, Rong; Kisker, Caroline; Tonge, Peter J (January 30, 2007). "Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis". Biochemistry . 46 (4): 954–964. doi:10.1021/bi060852x. PMID   17240979.