Salter's duck, also known as the nodding duck or by its official name the Edinburgh duck, is a device that converts wave power into electricity. The wave impact induces rotation of gyroscopes located inside a pear-shaped "duck", and an electrical generator converts this rotation into electricity with an overall efficiency of up to 90%. The Salter's duck was invented by Stephen Salter in response to the oil shortage in the 1970s and was one of the earliest generator designs proposed to the Wave Energy programme in the United Kingdom. The funding for the project was cut off in the early 1980s after oil supplies rebounded and the UK government moved away from alternative energy sources. [1] As of May 2018 no wave-power devices have ever gone into large-scale production.
As a result of the 1973 oil crisis, Salter set about creating a source of alternative energy. The idea for creating Salter's duck came about from his studies on a lavatory cistern while at the University of Edinburgh. [2] He invented Salter's duck in 1974 and attempted to make it the main device of choice for the Wave Energy programme in the United Kingdom. A prototype attempt to use the device was constructed in 1976 off Dores Beach. It was to be used to "provide some 20 kW of power". [3] It was modified slightly from the original design, and Coventry University, which helped with the design, went on to utilize a separate type that was called the Sea Clam. [4]
Due to the 1980s oil glut, the perceived need for immediate alternative energy sources subsequently declined, and in 1982 the Wave Energy programme was shut down, ending the hope of Salter's duck becoming a mainstay in the alternative energy campaign. [5] After later investigation, it was discovered that the Energy Technology Support Unit's cost determinations had mis-estimated the cost of building Salter's duck by more than double the actual cost. The Energy Technology Support Unit [6] was set up in 1974 as an agency on behalf of the Department of Energy; though its function was to manage research programmes on renewable energy and energy conservation, it was operated by the United Kingdom Atomic Energy Authority. Cost considerations based on the findings were among the main factors in the ducks not being put into widespread production under the Wave Energy programme in the late 1970s. The other major factor was that a consulting firm[ who? ] tasked with distributing government grants passed over the 9.5 million pounds that had been allocated to Salter's research and the improvement of Salter's duck, so the funds were never actually granted to Salter and his group. [7] From this revelation and with the increase in research into alternative energy in the 2000s, Salter's duck has begun to be used as a part of wave energy research in the United Kingdom. [5]
The original prototype of Salter's duck was made of "a string of floating vanes of rudimentary duck cross-sections linked through a central spine". The string itself had 12 ducks attached to it that were "50 cm wide mounted on a spine 27 cm in diameter and 6 m long." It was made at Coventry University, with materials from Ready Made Concrete and Insituform. [3] The final design worked by having 20 to 30 ducks connected together by the jointed spine, with each duck moving with the waves that hit it and transferring the energy of the impact to "six to ten pumps" for each duck. [4] The pear shape of the ducks have them facing the waves due to the decided orientation of their spine so that they rock and turn over when a wave hits them. This causes four gyroscopes inside to move back and forth, creating hydraulic energy that is transferred to a turbine or generator. [8]
In order to determine the efficiency of energy output from Salter's duck, in 1975, scientist Swift-Hook and others ran a series of tests. The optimum range of the ducks was determined according to the formula,
The use of a lowercase r in this formula indicates the back radius of the ducks. They also had to test for the incidence energy (R) given off by a submerged surface (s), the formula of which is,
In this formula, the v stands for body velocity and the u for unperturbed fluid velocity perpendicular to the surface. With this, they were able to then use the final formula that tested for the absorption efficiency, eta (n),
The use of these three formulas allowed Swift-Hook to determine that Salter's duck is able to convert "90% of the wave energy into mechanical energy". However, this percentage was lower when the duck was tested in a laboratory. In varying types of realistic conditions, the efficiency of the duck varies wildly and often drops to around 50%, as ducks are more often used in rough weather in order to convert enough wave power. Conversely, ducks are not useful in calm weather, as the waves would not have enough energy for there to be substantial energy output (even at high conversion efficiency). [4]
Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. The device trades off input forces against movement to obtain a desired amplification in the output force. The model for this is the law of the lever. Machine components designed to manage forces and movement in this way are called mechanisms. An ideal mechanism transmits power without adding to or subtracting from it. This means the ideal machine does not include a power source, is frictionless, and is constructed from rigid bodies that do not deflect or wear. The performance of a real system relative to this ideal is expressed in terms of efficiency factors that take into account departures from the ideal.
In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.
In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.
Regenerative braking is an energy recovery mechanism that slows down a moving vehicle or object by converting its kinetic energy or potential energy into a form that can be either used immediately or stored until needed.
Thermoacoustic engines are thermoacoustic devices which use high-amplitude sound waves to pump heat from one place to another or use a heat difference to produce work in the form of sound waves.
Joule heating is the process by which the passage of an electric current through a conductor produces heat.
The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency.
Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).
Energy harvesting (EH) – also known as power harvesting,energy scavenging, or ambient power – is the process by which energy is derived from external sources, then stored for use by small, wireless autonomous devices, like those used in wearable electronics, condition monitoring, and wireless sensor networks.
A vaneless ion wind generator or power fence is a device that generates electrical energy by using the wind to move charged particles across an electric field.
Electric power is the rate of transfer of electrical energy within a circuit. Its SI unit is the watt, the general unit of power, defined as one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat directly into electrical energy through a phenomenon called the Seebeck effect. Thermoelectric generators function like heat engines, but are less bulky and have no moving parts. However, TEGs are typically more expensive and less efficient.
Concentrated solar power systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat, which drives a heat engine connected to an electrical power generator or powers a thermochemical reaction.
The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.
Stephen Hugh Salter, was a South African-born Scottish academic who was Emeritus Professor of Engineering Design at the University of Edinburgh and inventor of the eponymous Salter's duck wave energy device. Salter was also a proponent of geoengineering and was responsible for creating the concept of the mechanical enhancement of clouds to achieve cloud reflectivity enhancement.
Resonant inductive coupling or magnetic phase synchronous coupling is a phenomenon with inductive coupling in which the coupling becomes stronger when the "secondary" (load-bearing) side of the loosely coupled coil resonates. A resonant transformer of this type is often used in analog circuitry as a bandpass filter. Resonant inductive coupling is also used in wireless power systems for portable computers, phones, and vehicles.
A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.
Microwave electrothermal thruster, also known as MET, is a propulsion device that converts microwave energy into thermal energy. These thrusters are predominantly used in spacecraft propulsion, more specifically to adjust the spacecraft’s position and orbit. A MET sustains and ignites a plasma in a propellant gas. This creates a heated propellant gas which in turn changes into thrust due to the expansion of the gas going through the nozzle. A MET’s heating feature is like one of an arc-jet ; however, due to the free-floating plasma, there are no problems with the erosion of metal electrodes, and therefore the MET is more efficient.