Samuelson condition

Last updated

The Samuelson condition, due to Paul Samuelson, [1] in the theory of public economics, is a condition for optimal provision of public goods.

Contents

For an economy with n consumers, the conditions is:

MRSi is individual i's marginal rate of substitution and MRT is the economy's marginal rate of transformation [2] between the public good and an arbitrarily chosen private good. Note that while the marginal rates of substitution are indexed by individuals, the marginal rate of transformation is not; it is an economy wide rate.

If the private good is a numeraire good then the Samuelson condition can be re-written as:

where is the marginal benefit to each person of consuming one more unit of the public good, and is the marginal cost of providing that good. In other words, the public good should be provided as long as the overall benefits to consumers from that good are at least as great as the cost of providing it (public goods are non-rival, so can be enjoyed by many consumers simultaneously).

Supply and demand interpretation of Samuelson condition Samuelson condition.png
Supply and demand interpretation of Samuelson condition

When written this way, the Samuelson condition has a simple graphical interpretation. Each individual consumer's marginal benefit, , represents his or her demand for the public good, or willingness to pay. The sum of the marginal benefits represent the aggregate willingness to pay or aggregate demand. The marginal cost is, under competitive market conditions, the supply for public goods. Hence the Samuelson condition can be thought of as a generalization of supply and demand concepts from private to public goods.

Derivation

Let denote private goods, the public good, aggregate wealth, and how much is dedicated towards the production of public goods (sacrifices of private consumption made for the public good).

We maximize the weighted (by ) utility function for each consumer :

(spending on );

(all resources devoted to private goods must be greater than or equal to the sum of private goods across everyone).

We can solve using the Lagrangian method:

The first order conditions are given by:

From (2) and (3):

Divide by and then by :

But for all , so:

.

LHS is defined as the marginal rate of substitution of public for private good (for an individual ), and RHS is defined as the marginal rate of transformation (for the society as a whole). Therefore, finally, we arrive at:

[3]

See also

Related Research Articles

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Cobb–Douglas production function</span> Macroeconomic formula that describes productivity

In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs and the amount of output that can be produced by those inputs. The Cobb–Douglas form was developed and tested against statistical evidence by Charles Cobb and Paul Douglas between 1927 and 1947; according to Douglas, the functional form itself was developed earlier by Philip Wicksteed.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form for given functions , and , together with some boundary conditions at extreme values of . The goals of a given Sturm–Liouville problem are:

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

In mathematical analysis, Cesàro summation assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.

<span class="mw-page-title-main">Lambda cube</span>

In mathematical logic and type theory, the λ-cube is a framework introduced by Henk Barendregt to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus. Each dimension of the cube corresponds to a new kind of dependency between terms and types. Here, "dependency" refers to the capacity of a term or type to bind a term or type. The respective dimensions of the λ-cube correspond to:

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

In applied mathematics, polyharmonic splines are used for function approximation and data interpolation. They are very useful for interpolating and fitting scattered data in many dimensions. Special cases include thin plate splines and natural cubic splines in one dimension.

A differential equation can be homogeneous in either of two respects.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

In fluid dynamics, a flow with periodic variations is known as pulsatile flow, or as Womersley flow. The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

<span class="mw-page-title-main">Trochoidal wave</span> Solution of Euler equations

In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

  1. Samuelson, Paul A. (1954), The Theory of Public Expenditure, in: Review of Economics and Statistics 36, pp. 386–389.
  2. https://policonomics.com/marginal-rate-of-transformation
  3. Laffont, Jean-Jacques (July 1, 2008). Fundamentals of Public Economics. Cambridge, Massachusetts: The MIT Press. ISBN   9780262512190.