Sandia method

Last updated

The Sandia method (also known as Veers method) is a method for generating a turbulent wind profile that can be used in aero-elastic software to evaluate the fatigue imparted on a turbine in a turbulent environment. That is, it generates time series of wind speeds at a set of points on a surface, say the plane of the rotor of a wind turbine. Analysis is performed initially in the frequency domain, where turbulence can be described quantitatively with more ease than the time domain. Then, the time series are obtained by inverse fast Fourier transforms.

Contents

In its original form, the Sandia method only simulates the u-component of the wind; that is, the wind was modelled as propagating in a direction perpendicular to the plane of the rotor. Work carried out by NREL, specifically Kelley, suggested that a considerable amount of turbulent energy existed in the v-component (the v-component is parallel to both the plane of the rotor and the Earth). As such, the Sandia method was upgraded such that it included the v-component and w-component. Further upgrades have been performed such that the wind profile exhibits cross-axis correlation (turbulent fluctuations in one component being somehow connected to turbulent fluctuations in another). However, these are not considered in this article.

Point-wind speed spectra

Although turbulence leads to unpredictable results in the time domain, it can, to some extent, be characterized in the frequency domain. Turbulent fluctuations are dominated by low frequency components, with higher frequency components having less influence. For further information, see Kolmogorov's theory on turbulence.

Several models of frequency domain representations of point wind speeds have been developed: the von Kármán wind turbulence model and Dryden Wind Turbulence Model are examples of such.

Discretizing a spectrum

A spectrum in its original form is a continuous function. However, computer programmes operate on discrete functions. Thus a modification to whatever type of spectrum, be it Kaimal, von Karman, or some other spectrum, is needed. This is given below:

where is the discretized spectrum evaluated only at the discrete frequencies , is the continuous spectrum evaluated at and is the size of the step between consecutive frequencies being considered.

Coherence

When generating a time series of wind speeds for a set of points across a surface, coherence needs to be taken into account. That is, the instantaneous wind speed at some point, A, will bear some resemblance to the wind speed at some other point, B. Clearly, the resemblance is influenced by the separation of points A and B. That is, two points separated by a large distance will show less similarity to each other than two neighbouring points on the surface. In addition, one would expect low frequency components of the wind speeds at points A and B to show more correlation than high frequency components. As such, many coherence functions have been proposed: Davenport, Solari, etc. The Solari coherence spectrum is provided as an example:

where is a constant, is the separation of points and on the surface, is the frequency, and and are the mean wind speeds at points and respectively. The indices and run from 1 to n, and the index covers the frequency range. From the coherence function stems the coherence matrix. To cover all relationships between all points, the coherence function must be an -by--by- matrix. Clearly, the coherence matrix is symmetric about the main diagonal if we are restricting ourselves to looking at the coherence function at a single frequency. This is because the spatial separation between points A and B is the same as the spatial separation between B and A. That is, for a n-by-n grid, only elements need to be calculated for each frequency.

It is worth noting at this point that whilst the coherence matrix is strictly a 3-dimensional matrix (i, j, and k), computer programmes which implement the Sandia method typically reduce the coherence matrix to a 2-dimensional matrix where the frequency dimension has been 'removed'. This is to ease computational requirements. A 2-dimensional matrix is also required to perform some of the actions on the spectral matrix, such as a Cholesky decomposition, which is mentioned later. Of course, variation in frequency is still applied. However, the following process is carried out in full for one given frequency before proceeding to the next frequency. As such, in the following section, a power spectrum refers to the value of the power spectrum at a given frequency and not the full set of values across the frequency range being used. That is,

and

where an element of S, , would have given the strength of the spectrum at a particular frequency at a particular point in space.

Generating turbulence

Power spectra are needed for each of the points on the surface; this encapsulates information about the turbulence intensity for each point. Under IEC standards, only one power spectrum is used; that is, all points have the same turbulence intensity.

With the power spectra, the spectral matrix can be formed. This a -by- matrix. The main diagonal of the spectral matrix contains the previously defined spectra for all points on the surface. The off-main diagonal elements contain all the cross spectra between the points. The cross spectra are determined by the following function:

Due to the symmetry of the coherence matrix, only elements are independent. This property can be exploited to lighten memory requirements when writing a programme to simulate the Sandia method.

The spectral matrix, , can be written as the matrix product of a matrix, , and its transpose. That is,

is ultimately needed to obtain the complex Fourier co-efficients of the Fourier transforms of the time series of the wind speeds at all the points on the surface. Note - if the Fourier transform of a time domain function, , is , then the resultant spectrum is ; for multiple time domain functions, the Fourier co-efficients can be stored in a matrix, which then means that the above equation is applicable.

Obviously, there are an infinite number of solutions to the above expression; consequently, the assumption that is a lower triangular matrix is made such that only one solution exists. The solution can be found via a Cholesky decomposition. The resultant matrix can be thought of as the weighting factors for the linear combination of N independent, unit-magnitude, white-noise inputs that will yield N correlated outputs with the correct spectral matrix. [1]

To get the complex Fourier co-efficients associated with the Fourier transform of the time series of the wind speeds, a column vector, is obtained by multiply the matrix by a column vector containing values of Gaussian white noise, , as shown below:

The column vector gives the Fourier co-efficients for all points on the grid at a given frequency. This is then built up into a two dimensional matrix which covers the complex Fourier co-efficients for all points across all frequencies. Then, an inverse fast Fourier transform is performed to get the time series. That is,

See also

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.

<span class="mw-page-title-main">Eigenfunction</span> Mathematical function of a linear operator

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as for some scalar eigenvalue The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

<span class="mw-page-title-main">Turbulence modeling</span> Use of mathematical models to simulate turbulent flow

In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.

<span class="mw-page-title-main">Elliptic boundary value problem</span>

In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the steady state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.

<span class="mw-page-title-main">Reassignment method</span>

The method of reassignment is a technique for sharpening a time-frequency representation by mapping the data to time-frequency coordinates that are nearer to the true region of support of the analyzed signal. The method has been independently introduced by several parties under various names, including method of reassignment, remapping, time-frequency reassignment, and modified moving-window method. The method of reassignment sharpens blurry time-frequency data by relocating the data according to local estimates of instantaneous frequency and group delay. This mapping to reassigned time-frequency coordinates is very precise for signals that are separable in time and frequency with respect to the analysis window.

In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

<span class="mw-page-title-main">Least-squares spectral analysis</span> Periodicity computation method

Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.

<span class="mw-page-title-main">Singular spectrum analysis</span> Nonparametric spectral estimation method

In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève spectral decomposition of time series and random fields and in the Mañé (1981)–Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a sum of components, each having a meaningful interpretation. The name "singular spectrum analysis" relates to the spectrum of eigenvalues in a singular value decomposition of a covariance matrix, and not directly to a frequency domain decomposition.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith. With small modifications to the QFT, it can also be used for performing fast integer arithmetic operations such as addition and multiplication.

In rotordynamics, order tracking is a family of signal processing tools aimed at transforming a measured signal from time domain to angular domain. These techniques are applied to asynchronously sampled signals to obtain the same signal sampled at constant angular increments of a reference shaft. In some cases the outcome of the Order Tracking is directly the Fourier transform of such angular domain signal, whose frequency counterpart is defined as "order". Each order represents a fraction of the angular velocity of the reference shaft.

Reynolds stress equation model (RSM), also referred to as second moment closures are the most complete classical turbulence model. In these models, the eddy-viscosity hypothesis is avoided and the individual components of the Reynolds stress tensor are directly computed. These models use the exact Reynolds stress transport equation for their formulation. They account for the directional effects of the Reynolds stresses and the complex interactions in turbulent flows. Reynolds stress models offer significantly better accuracy than eddy-viscosity based turbulence models, while being computationally cheaper than Direct Numerical Simulations (DNS) and Large Eddy Simulations.

The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform. The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.

Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.

The Fradkin tensor, or Jauch-Hill-Fradkin tensor, named after Josef-Maria Jauch and Edward Lee Hill and David M. Fradkin, is a conservation law used in the treatment of the isotropic multidimensional harmonic oscillator in classical mechanics. For the treatment of the quantum harmonic oscillator in quantum mechanics, it is replaced by the tensor-valued Fradkin operator.

References

  1. Veers - Three-dimensional wind simulation

Bibliography