Santur Corporation

Last updated
Santur logo Santur Corporation Logo.JPG
Santur logo

Santur Corporation developed, manufactured and commercialized tunable lasers as well as parallel array devices and photonic integrated circuits for the telecommunications industry. [1] It was established in November 2000 in Fremont, California initially developing and commercializing the tunable lasers for metro and long-haul dense wavelength-division multiplexing (WDM) systems. The company had a patented a Distributed Feedback Laser (DFB)-array technology, which enabled the manufacture of broadly tunable sources that have the same performance and reliability as fixed DFBs. Santur claimed to have set a new standard in the telecommunications industry with its technology that features a unique combination of high power, wide tunability, stability, Telcordia GR-468 reliability, and value. [2]

NeoPhotonics, a California-based company that develops, manufactures, and sells optoelectronic products, acquired Santur in 2011 for $39.2 million. [3] The acquisition allowed NeoPhotonics access to Santur's 40 and 100 Gbit/s products. As the long-distance fiber optics technology has moved to coherent modulation techniques and laser linewidth has become more important, the Santur design of a DFB array with a MEMS mirror has been discontinued in favor of an external cavity tunable laser that was developed by NewFocus, Intel, and then Emcore, and acquired by Neophotonics in 2014. [4]

Tunable laser technology

Santur Corporation's development of tunable lasers was considered timely, as wavelength-division multiplexing (WDM), or adding multiple lanes at different colors into the same fiber for increased capacity was gaining popularity in long haul and metropolitan fiber optic links. [5] A tunable laser could function at any wavelength, eliminating the cost of manufacturing and the logistics of maintaining up to 80 different parts. [6] This is the case since tunability offers a more flexible and less costly operation. Given the large venture capital investments of the time, dozens of approaches and technologies were proposed. Competing companies includes Iolon corporation, Agility Communications, and Bandwidth9. [7] Earlier in 2000, another tunable laser company CoreTek had been sold to Nortel Corporation for approximately $1.4B. [8] [9]

Unlike other tunable lasers that have a single cavity that is adjusted to change the wavelength, Santur used an array of 12 or 14 lasers, each at a different wavelength, all fabricated on a single chip at about a ten micrometre pitch. Simply switching between lasers changes the wavelength in a coarse manner. Like most wavelength controlled telecommunication lasers, the laser chip is mounted on a thermoelectric cooler to stabilize the temperature. By making small adjustments to the inside temperature of the package, fine tuning of the wavelength can be realized. Additionally, the Santur laser package contains a micromechanical mirror that deflects in both x and y axes in order to couple the laser beam to the output fiber. This "switch" is necessary since each laser of the array emits at a different output aperture. [10] The micromechanical mirror loosens tolerances needed for packaging and allows the assembly to be put together with coarse tolerances and aligned electronically. [11] [12]

When the optical market improved in 2006, Santur gained substantial market share. [13] Single chip tunable lasers, such those of Agility (part of JDSU) and Bookham Oclaro had gained popularity, [14] but Santur claimed substantial Internet traffic used their products, of which 200,000 had shipped by 2008. [15]

Related Research Articles

<span class="mw-page-title-main">Optical amplifier</span> Device that amplifies an optical signal

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiberoptic cables which carry much of the world's telecommunication links.

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

Microtechnology deals with technology whose features have dimensions of the order of one micrometre. It focuses on physical and chemical processes as well as the production or manipulation of structures with one-micrometre magnitude.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span>

The vertical-cavity surface-emitting laser, or VCSEL, is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

Liquid crystal on silicon is a miniaturized reflective active-matrix liquid-crystal display or "microdisplay" using a liquid crystal layer on top of a silicon backplane. It is also referred to as a spatial light modulator. LCoS was initially developed for projection televisions but is now used for wavelength selective switching, structured illumination, near-eye displays and optical pulse shaping. By way of comparison, some LCD projectors use transmissive LCD, allowing light to pass through the liquid crystal.

<span class="mw-page-title-main">Tunable laser</span>

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

Arrayed waveguide gratings (AWG) are commonly used as optical (de)multiplexers in wavelength division multiplexed (WDM) systems. These devices are capable of multiplexing many wavelengths into a single optical fiber, thereby increasing the transmission capacity of optical networks considerably.

A photonic integrated circuit (PIC) or integrated optical circuit is a microchip containing two or more photonic components which form a functioning circuit. This technology detects, generates, transports, and processes light. Photonic integrated circuits utilize photons as opposed to electrons that are utilized by electronic integrated circuits. The major difference between the two is that a photonic integrated circuit provides functions for information signals imposed on optical wavelengths typically in the visible spectrum or near infrared (850–1650 nm).

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

<span class="mw-page-title-main">Tingye Li</span> Chinese-American scientist

Tingye Li was a Chinese-American scientist in the fields of microwaves, lasers and optical communications. His innovative work at AT&T pioneered the research and application of lightwave communication, and has had a far-reaching impact on information technology for over four decades.

Chiral Photonics, Inc., founded in 1999, is a photonics company based in Pine Brook, New Jersey, in the US.

Wavelength selective switching components are used in WDM optical communications networks to route (switch) signals between optical fibres on a per-wavelength basis.

<span class="mw-page-title-main">Digital planar holography</span>

Digital planar holography (DPH) is a method for designing and fabricating miniature components for integrated optics. It was invented by Vladimir Yankov and first published in 2003. The essence of the DPH technology is embedding computer designed digital holograms inside a planar waveguide. Light propagates through the plane of the hologram instead of perpendicularly, allowing for a long interaction path. Benefits of a long interaction path have long been used by volume or thick holograms. Planar configuration of the hologram provider for easier access to the embedded diagram aiding in its manufacture.

Rod C. Alferness was president of The Optical Society in 2008.

A super-channel is an evolution in dense wavelength-division multiplexing (DWDM) in which multiple, coherent optical carriers are combined to create a unified channel of a higher data rate, and which is brought into service in a single operational cycle.

<span class="mw-page-title-main">Yasuharu Suematsu</span> Japanese scientist

Yasuharu Suematsu is a researcher and educator in optical communication technology. His research has included the development of Dynamic Single Mode Semiconductor Lasers for actuation and the development of high-capacity, long-distance optical fiber communications technology.

NeoPhotonics Corporation is an American public corporation based in San Jose, California. It was founded in 1996. The company develops, manufactures and sells optoelectronic products that transmit, receive and switch high speed digital optical signals for communications networks, These products include transceivers, tunable lasers, high bandwidth receivers, optical semiconductors, photonic integrated circuits, and 100 gigabit per second and above modules." These are each "cost-effective components that handle massive amounts of data at very high speeds".

An erbium-doped waveguide amplifier is a type of an optical amplifier enhanced with erbium. It is a close relative of an EDFA, erbium-doped fiber amplifier, and in fact EDWA's basic operating principles are identical to those of the EDFA. Both of them can be used to amplify infrared light at wavelengths in optical communication bands between 1500 and 1600 nm. However, whereas an EDFA is made using a free-standing fiber, an EDWA is typically produced on a planar substrate, sometimes in ways that are very similar to the methods used in electronic integrated circuit manufacturing. Therefore, the main advantage of EDWAs over EDFAs lies in their potential to be intimately integrated with other optical components on the same planar substrate and thus making EDFAs unnecessary.

<span class="mw-page-title-main">Kaiam</span>

Kaiam Corporation was an American manufacturer of optronics equipment for computer networking. Founded in 2009, it was headquartered in Newark, California, and until December 2018 had a manufacturing facility in Silicon Glen in Scotland. After cash-flow problems and a patent infringement lawsuit, the company collapsed in early 2019. The founder and CEO was Bardia Pezeshki.

References

  1. "Company Overview of Santur Corporation". Bloomberg. August 14, 2018. Retrieved August 15, 2018.
  2. "Santur Corporation to Supply StrataLight With Widely Tunable Lasers for 40G". MarketWired. March 27, 2007. Retrieved August 15, 2018.
  3. "NeoPhotonics buys Santur for $39.2M". 2011-11-01. Archived from the original on 2011-11-01. Retrieved 2021-04-07.
  4. "Emcore announces the sale of its tunable laser and transceiver product lines to NeoPhotonics". www.globenewswire.com. October 23, 2014.
  5. Dan Sweeny (May 1, 2002). "Why tunable lasers are hot: four different approaches and at least four different applications--no wonder no one wants to pick a winner". Telecom Asia. Archived from the original on September 24, 2015. Retrieved May 27, 2013.
  6. http://www.commsdesign.com/design_corner/showArticle.jhtml?articleID=16503549 [ dead link ]
  7. "Fastpanel".
  8. "Coretek Is Closed". Light Reading. September 26, 2002. Retrieved May 27, 2013.
  9. "Agility Communications, Inc". Light Reading. April 12, 2000. Retrieved May 27, 2013.
  10. Tunable Lasers in Optical Networks, J. Buus, and E. J. Murphy, Journal of Lightwave Technology, Vol. 24, p 5-11, 2006
  11. Tunable Semiconductor Lasers: A Tutorial by Larry A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, Journal of Lightwave Technology, Vol. 22, Issue 1, pp. 193- (2004)
  12. 20-mW widely tunable laser module using DFB array and MEMS selection Pezeshki, B; Vail, E; Kubicky, J; Yoffe, ; Zou, S; Heanue, J; Epp, P; Rishton, S; Ton, D; Faraji, B; Emanuel, M; Hong, X; Sherback, M; Agrawal, V; Chipman, C; Razazan, T, in IEEE Photonics Technology Letters. Vol. 14, no. 10, pp. 1457-1459. October 2002
  13. "Santur Ships 100K". News release. November 14, 2007. Retrieved May 27, 2013.
  14. "Competition heightens in the tunable laser market". Fibre System. September 11, 2006. Archived from the original on April 7, 2008. Retrieved May 27, 2013.
  15. "Santur ships 200,000th widely tunable laser based on integrated laser arrays". News release. Santur Corporation. December 8, 2008. Archived from the original on July 21, 2009. Retrieved May 27, 2013.