Scalable Reliable Multicast

Last updated

A Scalable Reliable Multicast protocol is a reliable multicast framework for light-weight sessions and application level framing. [1] The algorithms of this framework are efficient, robust, and scale well to both very large networks and very large sessions. Wb, the distributed whiteboard tool designed and implemented by McCanne and Jacobson, is the first application based on the Scalable Reliable Multicast framework. [2]

Contents

Overview

Scalable Reliable Multicast is heavily based on the group delivery model that is the centerpiece of the IP multicast protocol. It attempts to follow the core design principles of transmission control protocol/Internet protocol (TCP/IP). It requires only the basic IP delivery model with possible duplication and reordering of packets and builds reliability on an end-to-end basis. The algorithms in Scalable Reliable Multicast dynamically adjust their control parameters based on the observed performance within a session like transmission control protocol adaptively setting timers or congestion control windows.

Components

It has three major components, multicast, reliability and scalability.

Multicast

It provides an efficient means to transmit data to multiple parties. A single copy of the packet travels down any given network link, and is duplicated at network branch points.

Reliability

It is based on loss detection and re-transmission policy. Since sender-oriented reliability may lead to ACK[ clarification needed ] implosion, it uses receiver-based reliability. It does not focus on any particular delivery order.

Scalability

This is an issue in many reliable multicast protocols because of state explosion and message implosion effect. Scalable Reliable Multicast uses various approaches like polling, hierarchy, suppression, etc, to achieve scalability.

Related Research Articles

The Internet protocol suite, commonly known as TCP/IP, is the set of communication protocols used in the Internet and similar computer networks. The current foundational protocols in the suite are the Transmission Control Protocol (TCP) and the Internet Protocol (IP), as well as the User Datagram Protocol (UDP).

Multicast Computer networking technique for transmission from one sender to multiple receivers

In computer networking, multicast is group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast should not be confused with physical layer point-to-multipoint communication.

The Real-time Transport Protocol (RTP) is a network protocol for delivering audio and video over IP networks. RTP is used in communication and entertainment systems that involve streaming media, such as telephony, video teleconference applications including WebRTC, television services and web-based push-to-talk features.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

In computer networking, the User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. With UDP, computer applications can send messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network. Prior communications are not required in order to set up communication channels or data paths.

Transport layer Layer in the OSI and TCP/IP models providing host-to-host communication services for applications

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

The end-to-end principle is a design framework in computer networking. In networks designed according to this principle, guaranteeing certain application-specific features, such as reliability and security, requires that they reside in the communicating end nodes of the network. Intermediary nodes, such as gateways and routers, that exist to establish the network, may implement these to improve efficiency but cannot guarantee end-to-end correctness.

Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.

The RTP Control Protocol (RTCP) is a sister protocol of the Real-time Transport Protocol (RTP). Its basic functionality and packet structure is defined in RFC 3550. RTCP provides out-of-band statistics and control information for an RTP session. It partners with RTP in the delivery and packaging of multimedia data, but does not transport any media data itself.

An overlay network is a computer network that is layered on top of another network.

IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.

In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum.

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

The Secure Real-Time Media Flow Protocol (RTMFP) is a protocol suite developed by Adobe Systems for encrypted, efficient multimedia delivery through both client-server and peer-to-peer models over the Internet. The protocol was originally proprietary, but was later opened up and is now published as RFC 7016.

A reliable multicast is any computer networking protocol that provides a reliable sequence of packets to multiple recipients simultaneously, making it suitable for applications such as multi-receiver file transfer.

Xcast

The explicit multi-unicast (Xcast) is a variation of multicast that supports a great number of multicast sessions with a small number of recipients in each. It adds all the destination IP addresses in the IP header, instead of using a multicast address. The traditional multicast schemes over Internet Protocol (IP) scale to multicast groups with many members, but they have scalability problems for a great number of groups. Multicast schemes can be used to minimize the bandwidth consumption. Xcast minimizes bandwidth consumption for small groups, by eliminating the signaling protocols and state information for every session of the standard IP multicast scheme.

The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the protocol provides the message-oriented feature of the User Datagram Protocol (UDP), while ensuring reliable, in-sequence transport of messages with congestion control like the Transmission Control Protocol (TCP). Unlike UDP and TCP, the protocol supports multihoming and redundant paths to increase resilience and reliability.

RDMA over Converged Ethernet (RoCE) or InfiniBand over Ethernet (IBoE) is a network protocol that allows remote direct memory access (RDMA) over an Ethernet network. It does this by encapsulating an InfiniBand (IB) transport packet over Ethernet. There are two RoCE versions, RoCE v1 and RoCE v2. RoCE v1 is an Ethernet link layer protocol and hence allows communication between any two hosts in the same Ethernet broadcast domain. RoCE v2 is an internet layer protocol which means that RoCE v2 packets can be routed. Although the RoCE protocol benefits from the characteristics of a converged Ethernet network, the protocol can also be used on a traditional or non-converged Ethernet network.

NACK-Oriented Reliable Multicast (NORM) is a transport layer Internet protocol designed to provide reliable transport in multicast groups in data networks. It is formally defined by the Internet Engineering Task Force (IETF) in Request for Comments (RFC) 5740, which was published in November 2009.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

References

  1. Floyd, Sally and Jacobson (1995). ACM SIGCOMM Computer Communication Review.
  2. V. Jacobson (1992). "A Portable, Public Domain Network 'Whiteboard'".{{cite journal}}: Cite journal requires |journal= (help)