This article may rely excessively on sources too closely associated with the subject , potentially preventing the article from being verifiable and neutral.(October 2019) |
A security association (SA) is the establishment of shared security attributes between two network entities to support secure communication. An SA may include attributes such as: cryptographic algorithm and mode; traffic encryption key; and parameters for the network data to be passed over the connection. The framework for establishing security associations is provided by the Internet Security Association and Key Management Protocol (ISAKMP). Protocols such as Internet Key Exchange (IKE) and Kerberized Internet Negotiation of Keys (KINK) provide authenticated keying material. [1]
An SA is a simplex (one-way channel) and logical connection which endorses and provides a secure data connection between the network devices. The fundamental requirement of an SA arrives when the two entities communicate over more than one channel. Take, for example, a mobile subscriber and a base station. The subscriber may subscribe itself to more than one service. Therefore, each service may have different service primitives, such as a data encryption algorithm, public key, or initialization vector. To make things easier, all of this security information is grouped logically, and the logical group itself is a Security Association. Each SA has its own ID called SAID. So both the base station and mobile subscriber will share the SAID, and they will derive all the security parameters.
In other words, an SA is a logical group of security parameters that enable the sharing of information to another entity.
Diffie–Hellman key exchange is a method of securely exchanging cryptographic keys over a public channel and was one of the first public-key protocols as conceived by Ralph Merkle and named after Whitfield Diffie and Martin Hellman. DH is one of the earliest practical examples of public key exchange implemented within the field of cryptography. Published in 1976 by Diffie and Hellman, this is the earliest publicly known work that proposed the idea of a private key and a corresponding public key.
The Session Initiation Protocol (SIP) is a signaling protocol used for initiating, maintaining, and terminating communication sessions that include voice, video and messaging applications. SIP is used in Internet telephony, in private IP telephone systems, as well as mobile phone calling over LTE (VoLTE).
The Secure Shell Protocol (SSH) is a cryptographic network protocol for operating network services securely over an unsecured network. Its most notable applications are remote login and command-line execution.
Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behaviour. Devices that typically support SNMP include cable modems, routers, switches, servers, workstations, printers, and more.
In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).
A virtual private network (VPN) extends a private network across a public network and enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network. The benefits of a VPN include increases in functionality, security, and management of the private network. It provides access to resources that are inaccessible on the public network and is typically used for remote workers. Encryption is common, although not an inherent part of a VPN connection.
Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.
In computing, Internet Key Exchange is the protocol used to set up a security association (SA) in the IPsec protocol suite. IKE builds upon the Oakley protocol and ISAKMP. IKE uses X.509 certificates for authentication ‒ either pre-shared or distributed using DNS ‒ and a Diffie–Hellman key exchange to set up a shared session secret from which cryptographic keys are derived. In addition, a security policy for every peer which will connect must be manually maintained.
In computer networking, Layer 2 Tunneling Protocol (L2TP) is a tunneling protocol used to support virtual private networks (VPNs) or as part of the delivery of services by ISPs. It uses encryption ('hiding') only for its own control messages, and does not provide any encryption or confidentiality of content by itself. Rather, it provides a tunnel for Layer 2, and the tunnel itself may be passed over a Layer 3 encryption protocol such as IPsec.
Internet security is a branch of computer security. It encompasses the Internet, browser security, web site security, and network security as it applies to other applications or operating systems as a whole. Its objective is to establish rules and measures to use against attacks over the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.
SILC is a protocol that provides secure synchronous conferencing services over the Internet.
Extensible Authentication Protocol (EAP) is an authentication framework frequently used in network and internet connections. It is defined in RFC 3748, which made RFC 2284 obsolete, and is updated by RFC 5247. EAP is an authentication framework for providing the transport and usage of material and parameters generated by EAP methods. There are many methods defined by RFCs, and a number of vendor-specific methods and new proposals exist. EAP is not a wire protocol; instead it only defines the information from the interface and the formats. Each protocol that uses EAP defines a way to encapsulate by the user EAP messages within that protocol's messages.
Network address translation traversal is a computer networking technique of establishing and maintaining Internet protocol connections across gateways that implement network address translation (NAT).
Wireless security is the prevention of unauthorized access or damage to computers or data using wireless networks, which include Wi-Fi networks. The term may also refer to the protection of the wireless network itself from adversaries seeking to damage the confidentiality, integrity, or availability of the network. The most common type is Wi-Fi security, which includes Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). WEP is an old IEEE 802.11 standard from 1997. It is a notoriously weak security standard: the password it uses can often be cracked in a few minutes with a basic laptop computer and widely available software tools. WEP was superseded in 2003 by WPA, a quick alternative at the time to improve security over WEP. The current standard is WPA2; some hardware cannot support WPA2 without firmware upgrade or replacement. WPA2 uses an encryption device that encrypts the network with a 256-bit key; the longer key length improves security over WEP. Enterprises often enforce security using a certificate-based system to authenticate the connecting device, following the standard 802.11X.
Network Security Services (NSS) is a collection of cryptographic computer libraries designed to support cross-platform development of security-enabled client and server applications with optional support for hardware TLS/SSL acceleration on the server side and hardware smart cards on the client side. NSS provides a complete open-source implementation of cryptographic libraries supporting Transport Layer Security (TLS) / Secure Sockets Layer (SSL) and S/MIME. NSS releases prior to version 3.14 are tri-licensed under the Mozilla Public License 1.1, the GNU General Public License, and the GNU Lesser General Public License. Since release 3.14, NSS releases are licensed under GPL-compatible Mozilla Public License 2.0.
Group Domain of Interpretation or GDOI is a cryptographic protocol for group key management. The GDOI protocol is specified in an IETF Standard, RFC 6407, and is based on Internet Security Association and Key Management Protocol (ISAKMP), RFC 2408, and Internet Key Exchange version 1 (IKE). Whereas IKE is run between two peers to establish a "pair-wise security association", GDOI protocol is run between a group member and a "group controller/key server" (controller) and establishes a security association among two or more group members.
The Universal Mobile Telecommunications System (UMTS) is one of the new ‘third generation’ 3G mobile cellular communication systems. UMTS builds on the success of the ‘second generation’ GSM system. One of the factors in the success of GSM has been its security features. New services introduced in UMTS require new security features to protect them. In addition, certain real and perceived shortcomings of GSM security need to be addressed in UMTS.
Kerberized Internet Negotiation of Keys (KINK) is a protocol defined in RFC 4430 used to set up an IPsec security association (SA), similar to Internet Key Exchange (IKE), utilizing the Kerberos protocol to allow trusted third parties to handle authentication of peers and management of security policies in a centralized fashion.
A cipher suite is a set of algorithms that help secure a network connection. Suites typically use Transport Layer Security (TLS) or its now-deprecated predecessor Secure Socket Layer (SSL). The set of algorithms that cipher suites usually contain include: a key exchange algorithm, a bulk encryption algorithm, and a message authentication code (MAC) algorithm.
ChaCha20-Poly1305 is an authenticated encryption with additional data (AEAD) algorithm, that combines the ChaCha20 stream cipher with the Poly1305 message authentication code. Its usage in IETF protocols is standardized in RFC 8439. It has fast software performance, and without hardware acceleration, is usually faster than AES-GCM.