Semialgebraic space

Last updated

In mathematics, especially in real algebraic geometry, a semialgebraic space is a space which is locally isomorphic to a semialgebraic set.

Mathematics field of study

Mathematics includes the study of such topics as quantity, structure, space, and change.

In mathematics, real algebraic geometry is the study of real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them.

In mathematics, a semialgebraic set is a subset S of Rn for some real closed field R defined by a finite sequence of polynomial equations and inequalities, or any finite union of such sets. A semialgebraic function is a function with semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers.

Definition

Let U be an open subset of Rn for some n. A semialgebraic function on U is defined to be a continuous real-valued function on U whose restriction to any semialgebraic set contained in U has a graph which is a semialgebraic subset of the product space Rn×R. This endows Rn with a sheaf of semialgebraic functions.

In mathematics, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output. Otherwise, a function is said to be a discontinuous function. A continuous function with a continuous inverse function is called a homeomorphism.

Real number number representing a continuous quantity

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as 2. Included within the irrationals are the transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more.

Graph of a function the set of the couples (x,f(x)), with x is in the domain of the function f

In mathematics, the graph of a function f is, formally, the set of all ordered pairs (x, f ), such that x is in the domain of the function f, and, in practice, the graphical representation of this set. If the function input x, and the values f(x), are real numbers, the graph is a two-dimensional graph, and, for a continuous function, is a curve. If the function input x is an ordered pair (x1, x2) of real numbers, the graph is the collection of all pairs (, f ). These pairs can be identified with the ordered triples (x1, x2, f ). For a continuous function the graph of such a function is a surface.

(For example, any polynomial mapping between semialgebraic sets is a semialgebraic function, as is the maximum of two semialgebraic functions.)

A semialgebraic space is a locally ringed space which is locally isomorphic to Rn with its sheaf of semialgebraic functions.

See also

In mathematics, a real closed ring is a commutative ring A that is a subring of a product of real closed fields, which is closed under continuous semi-algebraic functions defined over the integers.


Related Research Articles

In algebra and algebraic geometry, the spectrum of a commutative ring R, denoted by , is the set of all prime ideals of R. It is commonly augmented with the Zariski topology and with a structure sheaf, turning it into a locally ringed space. A locally ringed space of this form is called an affine scheme.

In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original one. For example, such data can consist of the rings of continuous or smooth real-valued functions defined on each open set. Sheaves are by design quite general and abstract objects, and their correct definition is rather technical. They are variously defined, for example, as sheaves of sets or sheaves of rings, depending on the type of data assigned to open sets.

Affine variety algebraic variety defined within affine space

In algebraic geometry, an affine variety over an algebraically closed field k is the zero-locus in the affine n-space of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central figure of this study is Alexander Grothendieck and his 1957 Tohuku paper.

In algebraic geometry, a very ample line bundle is one with enough global sections to set up an embedding of its base variety or manifold into projective space. An ample line bundle is one such that some positive power is very ample. Globally generated sheaves are those with enough sections to define a morphism to projective space.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are ultimately derived from the notion of divisibility in the integers and algebraic number fields.

Differentiable manifold manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: the fiber of the bundle over a vector space V is V itself. In the case of projective space the tautological bundle is known as the tautological line bundle.

Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps." Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin.

An analytic space is a generalization of an analytic manifold that allows singularities. An analytic space is a space that is locally the same as an analytic variety. They are prominent in the study of several complex variables, but they also appear in other contexts.

In real algebraic geometry, a Nash function on an open semialgebraic subset URn is an analytic function f: UR satisfying a nontrivial polynomial equation P(x,f ) = 0 for all x in U. Some examples of Nash functions:

In mathematics, a complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic spaces are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.

In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.

Projective space plays a central role in algebraic geometry. The aim of this article is to define the notion in terms of abstract algebraic geometry and to describe some basic uses of projective space.

This is a glossary of algebraic geometry.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) →F(V) are compatible with the restriction maps O(U) →O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).