Sequential estimation

Last updated

In statistics, sequential estimation refers to estimation methods in sequential analysis where the sample size is not fixed in advance. Instead, data is evaluated as it is collected, and further sampling is stopped in accordance with a predefined stopping rule as soon as significant results are observed. The generic version is called the optimal Bayesian estimator, [1] which is the theoretical underpinning for every sequential estimator (but cannot be instantiated directly). It includes a Markov process for the state propagation and measurement process for each state, which yields some typical statistical independence relations. The Markov process describes the propagation of a probability distribution over discrete time instances and the measurement is the information one has about each time instant, which is usually less informative than the state. Only the observed sequence will, together with the models, accumulate the information of all measurements and the corresponding Markov process to yield better estimates.

From that, the Kalman filter (and its variants), the particle filter, the histogram filter and others can be derived. It depends on the models, which one to use and requires experience to choose the right one. In most cases, the goal is to estimate the state sequence from the measurements. In other cases, one can use the description to estimate the parameters of a noise process for example. One can also accumulate the unmodeled statistical behavior of the states projected in the measurement space (called innovation sequence, which naturally includes the orthogonality principle in its derivations to yield an independence relation and therefore can be also cast into a Hilbert space representation, which makes it very intuitive) over time and compare it with a threshold, which then corresponds to the aforementioned stopping criterion. One difficulty is to set up the initial conditions for the probabilistic models, which is in most cases done by experience, data sheets or precise measurements with a different setup.

The statistical behaviour of the heuristic/sampling methods (e.g. particle filter or histogram filter) depends on many parameters and implementation details and should not be used in safety critical applications (since it is very hard to yield theoretical guarantees or do proper testing), unless one has a very good reason.

If there is a dependence of each state on an overall entity (e.g. a map or simply an overall state variable), one typically uses SLAM (simultaneous localization and mapping) techniques, which include the sequential estimator as a special case (when the overall state variable has just one state). It will estimate the state sequence and the overall entity.

There are also none-causal variants, that have all measurements at the same time, batches of measurements or revert the state evolution to go backwards again. These are then, however, not real time capable (except one uses a really big buffer, that lowers the throughput dramatically) anymore and only sufficient for post processing. Other variants do several passes to yield a rough estimate first and then refine it by the following passes, which is inspired by video editing/transcoding. For image processing (where all pixels are available at the same time) these methods become causal again.

Sequential estimation is the core of many well known applications, such as the Viterbi decoder, convolutional codes, video compression or target tracking. Due to its state space representation, which is in most cases motivated by physical laws of motion, there is a direct link to control applications, which led to the use of the Kalman filter for space applications for example.

See also

Related Research Articles

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule, the quantity of interest and its result are distinguished. For example, the sample mean is a commonly used estimator of the population mean.

The following outline is provided as an overview of and topical guide to statistics:

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobservable ("hidden") states. As part of the definition, HMM requires that there be an observable process whose outcomes are "influenced" by the outcomes of in a known way. Since cannot be observed directly, the goal is to learn about by observing HMM has an additional requirement that the outcome of at time must be "influenced" exclusively by the outcome of at and that the outcomes of and at must be conditionally independent of at given at time

In statistics, point estimation involves the use of sample data to calculate a single value which is to serve as a "best guess" or "best estimate" of an unknown population parameter. More formally, it is the application of a point estimator to the data to obtain a point estimate.

<span class="mw-page-title-main">Kalman filter</span> Algorithm that estimates unknowns from a series of measurements over time

For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory.

In statistics, Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a probability distribution. By constructing a Markov chain that has the desired distribution as its equilibrium distribution, one can obtain a sample of the desired distribution by recording states from the chain. The more steps that are included, the more closely the distribution of the sample matches the actual desired distribution. Various algorithms exist for constructing chains, including the Metropolis–Hastings algorithm.

<span class="mw-page-title-main">Dynamic Bayesian network</span> Probabilistic graphical model

A dynamic Bayesian network (DBN) is a Bayesian network (BN) which relates variables to each other over adjacent time steps.

Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered:

In statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated. Since the posterior mean is cumbersome to calculate, the form of the MMSE estimator is usually constrained to be within a certain class of functions. Linear MMSE estimators are a popular choice since they are easy to use, easy to calculate, and very versatile. It has given rise to many popular estimators such as the Wiener–Kolmogorov filter and Kalman filter.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function (PDF) recursively over time using incoming measurements and a mathematical process model. The process relies heavily upon mathematical concepts and models that are theorized within a study of prior and posterior probabilities known as Bayesian statistics.

In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are:

  1. Permutation tests
  2. Bootstrapping
  3. Cross validation

Monte Carlo localization (MCL), also known as particle filter localization, is an algorithm for robots to localize using a particle filter. Given a map of the environment, the algorithm estimates the position and orientation of a robot as it moves and senses the environment. The algorithm uses a particle filter to represent the distribution of likely states, with each particle representing a possible state, i.e., a hypothesis of where the robot is. The algorithm typically starts with a uniform random distribution of particles over the configuration space, meaning the robot has no information about where it is and assumes it is equally likely to be at any point in space. Whenever the robot moves, it shifts the particles to predict its new state after the movement. Whenever the robot senses something, the particles are resampled based on recursive Bayesian estimation, i.e., how well the actual sensed data correlate with the predicted state. Ultimately, the particles should converge towards the actual position of the robot.

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function. Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation.

In various science/engineering applications, such as independent component analysis, image analysis, genetic analysis, speech recognition, manifold learning, and time delay estimation it is useful to estimate the differential entropy of a system or process, given some observations.

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes about an estimate of the current mean and covariance. In the case of well defined transition models, the EKF has been considered the de facto standard in the theory of nonlinear state estimation, navigation systems and GPS.

The smoothing problem is the problem of estimating an unknown probability density function recursively over time using incremental incoming measurements. It is one of the main problems defined by Norbert Wiener. A smoother is an algorithm that implements a solution to this problem, typically based on recursive Bayesian estimation. The smoothing problem is closely related to the filtering problem, both of which are studied in Bayesian smoothing theory.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning:

References

  1. "Bayesian Estimation Lecture Notes" (PDF).