Serre group

Last updated

In mathematics, the Serre groupS is the pro-algebraic group whose representations correspond to CM-motives over the algebraic closure of the rationals, or to polarizable rational Hodge structures with abelian Mumford–Tate groups. It is a projective limit of finite dimensional tori, so in particular is abelian. It was introduced by Serre  ( 1968 ). It is a subgroup of the Taniyama group.

Mathematics field of study

Mathematics includes the study of such topics as quantity, structure, space, and change.

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

In algebraic geometry, the Mumford–Tate groupMT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford (1966) introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. Serre (1967) introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate (1967) on p-divisible groups, and named them Mumford–Tate groups.

There are two different but related groups called the Serre group, one the connected component of the identity in the other. This article is mainly about the connected group, usually called the Serre group but sometimes called the connected Serre group. In addition one can define Serre groups of algebraic number fields, and the Serre group is the inverse limit of the Serre groups of number fields.

In mathematics, an algebraic number fieldF is a finite degree field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.

Definition


The Serre group is the projective limit of the Serre groups of SL of finite Galois extensions of the rationals, and each of these groups SL is a torus, so is determined by its module of characters, a finite free Z-module with an action of the finite Galois group Gal(L/Q). If L* is the algebraic group with L*(A) the units of AL, then L* is a torus with the same dimension as L, and its characters can be identified with integral functions on Gal(L/Q). The Serre group SL is a quotient of this torus L*, so can be described explicitly in terms of the module X*(SL) of rational characters. This module of rational characters can be identified with the integral functions λ on Gal(L/Q) such that

In mathematics, a Galois extension is an algebraic field extension E/F that is normal and separable; or equivalently, E/F is algebraic, and the field fixed by the automorphism group Aut(E/F) is precisely the base field F. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory.

(σ−1)(ι+1)λ = (ι+1)(σ−1)λ = 0

for all σ in Gal(L/Q), where ι is complex conjugation. It is acted on by the Galois group.

The full Serre group S can be described similarly in terms of its module X*(S) of rational characters. This module of rational characters can be identified with the locally constant integral functions λ on Gal(Q/Q) such that

(σ−1)(ι+1)λ = (ι+1)(σ−1)λ = 0

for all σ in Gal(Q/Q), where ι is complex conjugation.

Related Research Articles

Field (mathematics) algebraic structure

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined, and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.

In mathematics, profinite groups are topological groups that are in a certain sense assembled from finite groups. They share many properties with their finite quotients: for example, both Lagrange's theorem and the Sylow theorems generalise well to profinite groups.

Topological group

In mathematics, a topological group is a group G together with a topology on G such that the group's binary operation and the group's inverse function are continuous functions with respect to the topology. A topological group is a mathematical object with both an algebraic structure and a topological structure. Thus, one may perform algebraic operations, because of the group structure, and one may talk about continuous functions, because of the topology.

In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation.

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible n×n matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation MTM = 1 where MT is the transpose of M.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960's to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a 'motif' is the 'cohomology essence' of a variety.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields is an important tool in number theory.

In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the theory of tori in Lie group theory.

Group scheme group object in the category of schemes

In mathematics, a group scheme is a type of algebro-geometric object equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

Compact group

In mathematics, a compact (topological) group is a topological group whose topology is compact. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

Reductive group algebraic group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

Tate conjecture conjecture in algebraic geometry

In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The Tate conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

Complexification (Lie group)

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

References

Arthur Ogus American mathematician

Arthur Edward Ogus is an American mathematician. His research is in algebraic geometry; he has served as chair of the mathematics department at the University of California, Berkeley.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.