This article includes a list of general references, but it lacks sufficient corresponding inline citations .(August 2010) |
The Service Location Protocol (SLP, srvloc) is a service discovery protocol that allows computers and other devices to find services in a local area network without prior configuration. SLP has been designed to scale from small, unmanaged networks to large enterprise networks. It has been defined in RFC 2608 and RFC 3224 as standards track document.
SLP is used by devices to announce services on a local network. Each service must have a URL that is used to locate the service. Additionally it may have an unlimited number of name/value pairs, called attributes. Each device must always be in one or more scopes. Scopes are simple strings and are used to group services, comparable to the network neighborhood in other systems. A device cannot see services that are in different scopes.
The URL of a printer could look like:
service:printer:lpr://myprinter/myqueue
This URL describes a queue called "myqueue" on a printer with the host name "myprinter". The protocol used by the printer is LPR. Note that a special URL scheme "service:" is used by the printer. "service:" URLs are not required: any URL scheme can be used, but they allow you to search for all services of the same type (e.g. all printers) regardless of the protocol that they use. The first three components of the "service:" URL type ("service:printer:lpr") are also called service type. The first two components ("service:printer") are called abstract service type. In a non-"service:" URL the schema name is the service type (for instance "http" in "http://www.wikipedia.org").
The attributes of the printer could look like:
(printer-name=Hugo), (printer-natural-language-configured=en-us), (printer-location=In my home office), (printer-document-format-supported=application/postscript), (printer-color-supported=false), (printer-compression-supported=deflate, gzip)
The example uses the standard syntax for attributes in SLP, only newlines have been added to improve readability.
The definition of a "service:" URL and the allowed attributes for the URL are specified by a service template, a formalized description of the URL syntax and the attributes. Service templates are defined in RFC 2609.
SLP allows several query types to locate services and obtain information about them:
SLP has three different roles for devices. A device can also have two or all three roles at the same time.
Today most implementations are daemons that can act both as UA and SA. Usually they can be configured to become a DA as well.
SLP is a packet-oriented protocol. Most packets are transmitted using UDP, but TCP can also be used for the transmission of longer packets. Because of the potential unreliability of UDP, SLP repeats all multicasts several times in increasing intervals until an answer has been received. All devices are required to listen on port 427 for UDP packets, SAs and DAs should also listen for TCP on the same port. Multicasting is used extensively by SLP, especially by devices that join a network and need to find other devices.
The operation of SLP differs considerably, depending on whether a Directory Agent (DA) is in the network or not. When a client first joins a network it multicasts a query for DAs on the network. If no DA answers it will assume that it is in a network without DAs. It is also possible to add DAs later, as they multicast a 'heartbeat' packet in a predefined interval that will be received by all other devices. When an SA discovers a DA, it is required to register all services at the DA. When a service disappears the SA should notify the DA and unregister it.
In order to send a query in a network without a DA, the UA sends a multicast UDP packet that contains the query. All SAs that contain matches will send a UDP answer to the UA. If the answer is too large to fit into a single UDP packet, the packet will be marked as "overflown" and the UA is free to send the query directly to the SA using TCP, which can transmit packets of any size.
In order to send a query in a network with a DA, the UA will send the query packet to the DA using either UDP or TCP. As every SA must register all services with the DA, the DA is able to fulfill the request completely and simply sends the result back to the UA.
SLP contains a public-key cryptography based security mechanism that allows signing of service announcements. In practice it is rarely used:
An Internet Protocol address is a numerical label such as 192.0.2.1 that is connected to a computer network that uses the Internet Protocol for communication. An IP address serves two main functions: network interface identification and location addressing.
The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address, for example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.
Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and is intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.
The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.
In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.
Network address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.
In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.
Universal Plug and Play (UPnP) is a set of networking protocols that permits networked devices, such as personal computers, printers, Internet gateways, Wi-Fi access points and mobile devices to seamlessly discover each other's presence on the network and establish functional network services. UPnP is intended primarily for residential networks without enterprise-class devices.
The Internet Group Management Protocol (IGMP) is a communications protocol used by hosts and adjacent routers on IPv4 networks to establish multicast group memberships. IGMP is an integral part of IP multicast and allows the network to direct multicast transmissions only to hosts that have requested them.
The Bootstrap Protocol (BOOTP) is a computer networking protocol used in Internet Protocol networks to automatically assign an IP address to network devices from a configuration server. The BOOTP was originally defined in RFC 951.
Zero-configuration networking (zeroconf) is a set of technologies that automatically creates a usable computer network based on the Internet Protocol Suite (TCP/IP) when computers or network peripherals are interconnected. It does not require manual operator intervention or special configuration servers. Without zeroconf, a network administrator must set up network services, such as Dynamic Host Configuration Protocol (DHCP) and Domain Name System (DNS), or configure each computer's network settings manually.
Label Distribution Protocol (LDP) is a protocol in which routers capable of Multiprotocol Label Switching (MPLS) exchange label mapping information. Two routers with an established session are called LDP peers and the exchange of information is bi-directional. LDP is used to build and maintain LSP databases that are used to forward traffic through MPLS networks.
STUN is a standardized set of methods, including a network protocol, for traversal of network address translator (NAT) gateways in applications of real-time voice, video, messaging, and other interactive communications.
NetBIOS over TCP/IP is a networking protocol that allows legacy computer applications relying on the NetBIOS API to be used on modern TCP/IP networks.
In computer networking, the multicast DNS (mDNS) protocol resolves hostnames to IP addresses within small networks that do not include a local name server. It is a zero-configuration service, using essentially the same programming interfaces, packet formats and operating semantics as unicast Domain Name System (DNS). It was designed to work as either a stand-alone protocol or compatibly with standard DNS servers. It uses IP multicast User Datagram Protocol (UDP) packets, and is implemented by the Apple Bonjour and open source Avahi software packages, included in most Linux distributions. Although the Windows 10 implementation was limited to discovering networked printers, subsequent releases resolved hostnames as well. mDNS can work in conjunction with DNS Service Discovery (DNS-SD), a companion zero-configuration networking technique specified separately in RFC 6763.
IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.
Web Services Dynamic Discovery (WS-Discovery) is a technical specification that defines a multicast discovery protocol to locate services on a local network. It operates over TCP and UDP port 3702 and uses IP multicast address 239.255.255.250 or FF02::C. As the name suggests, the actual communication between nodes is done using web services standards, notably SOAP-over-UDP.
A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.
In computer networking, a port or port number is a number assigned to uniquely identify a connection endpoint and to direct data to a specific service. At the software level, within an operating system, a port is a logical construct that identifies a specific process or a type of network service. A port at the software level is identified for each transport protocol and address combination by the port number assigned to it. The most common transport protocols that use port numbers are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP); those port numbers are 16-bit unsigned numbers.