Service control point

Last updated

A service control point (SCP) is a standard component of the Intelligent Network (IN) telephone system which is used to control the service [1] . Standard SCPs in the telecom industry today are deployed using SS7, SIGTRAN or SIP technologies. The SCP queries the service data point (SDP) which holds the actual database and directory. SCP, using the database from the SDP, identifies the geographical number to which the call is to be routed. This is the same mechanism that is used to route 800 numbers.

SCP may also communicate with an intelligent peripheral (IP) to play voice messages, or prompt for information from the user, such as prepaid long distance using account codes. This is done by implementing telephone feature codes like "#", which can be used to terminate the input for a user name or password or can be used for call forwarding. These are realized using Intelligent Network Application Part (INAP) that sits above Transaction Capabilities Application Part (TCAP) on the SS7 protocol stack. The TCAP is part of the top or 7th layer of the OSI layer breakdown.

SCPs are connected with either SSPs or STPs. This is dependent upon the network architecture that the network service provider wants. The most common implementation uses STPs.

SCP and SDP split is becoming a common industry practice. This is known generally in the industry by split architecture. Reason is that operators want to decouple the dependency between the two functionality to facilitate upgrades and possibly rely on different vendors.

Related Research Articles

The Internet protocol suite, commonly known as TCP/IP, is the set of communication protocols used in the Internet and similar computer networks. The current foundational protocols in the suite are the Transmission Control Protocol (TCP) and the Internet Protocol (IP), as well as the User Datagram Protocol (UDP).

OSI model Model of communication of seven abstraction layers

The Open Systems Interconnection model is a conceptual model that describes the universal standard of communication functions of a telecommunication system or computing system, without any regard to the system's underlying internal technology and specific protocol suites. Therefore, the objective is the interoperability of all diverse communication systems containing standard communication protocols, through the encapsulation and de-encapsulation of data, for all networked communication. In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

SMS Text messaging service component

SMS is a text messaging service component of most telephone, Internet, and mobile device systems. It uses standardized communication protocols that let mobile devices exchange short text messages. An intermediary service can facilitate a text-to-voice conversion to be sent to landlines.

The Session Initiation Protocol (SIP) is a signaling protocol used for initiating, maintaining, and terminating communication sessions that include voice, video and messaging applications. SIP is used in Internet telephony, in private IP telephone systems, as well as mobile phone calling over LTE (VoLTE).

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

The Intelligent Network (IN) is the standard network architecture specified in the ITU-T Q.1200 series recommendations. It is intended for fixed as well as mobile telecom networks. It allows operators to differentiate themselves by providing value-added services in addition to the standard telecom services such as PSTN, ISDN on fixed networks, and GSM services on mobile phones or other mobile devices.

Signalling System No. 7 (SS7) is a set of telephony signaling protocols developed in 1975, which is used to set up and tear down telephone calls in most parts of the world-wide public switched telephone network (PSTN). The protocol also performs number translation, local number portability, prepaid billing, Short Message Service (SMS), and other services.

In the seven-layer OSI model of computer networking, the session layer is layer 5.

In telecommunication, common-channel signaling (CCS), or common-channel interoffice signaling (CCIS), is the transmission of control information (signaling) via a separate channel than that used for the messages, The signaling channel usually controls multiple message channels.

The Message Transfer Part (MTP) is part of the Signaling System 7 (SS7) used for communication in Public Switched Telephone Networks. MTP is responsible for reliable, unduplicated and in-sequence transport of SS7 messages between communication partners.

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is a standardised architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Alternative methods of delivering voice (VoIP) or other multimedia services have become available on smartphones, but they have not become standardized across the industry. IMS is an architectural framework that provides such standardization.

INAP stands for Intelligent Network Application Protocol or Intelligent Network Application Part. It is the signalling protocol used in Intelligent Networking (IN). It is part of the Signalling System No. 7 (SS7) protocol suite, typically layered on top of the Transaction Capabilities Application Part (TCAP). It can also be termed as logic for controlling telecommunication services migrated from traditional switching points to computer based service independent platform.

The Mobile Application Part (MAP) is an SS7 protocol that provides an application layer for the various nodes in GSM and UMTS mobile core networks and GPRS core networks to communicate with each other in order to provide services to users. The Mobile Application Part is the application-layer protocol used to access the Home Location Register, Visitor Location Register, Mobile Switching Center, Equipment Identity Register, Authentication Centre, Short message service center and Serving GPRS Support Node (SGSN).

The CAMEL Application Part (CAP) is a signalling protocol used in the Intelligent Network (IN) architecture. CAP is a Remote Operations Service Element (ROSE) user protocol, and as such is layered on top of the Transaction Capabilities Application Part (TCAP) of the SS#7 protocol suite. CAP is based on a subset of the ETSI Core and allows for the implementation of carrier-grade, value added services such as unified messaging, prepaid, fraud control and Freephone in both the GSM voice and GPRS data networks. CAMEL is a means of adding intelligent applications to mobile networks. It builds upon established practices in the fixed line telephony business that are generally classed under the heading of or INAP CS-2 protocol.

In telephony, a service switching point (SSP) is the telephone exchange that initially responds, when a telephone caller dials a number, by sending a query to a central database called a service control point (SCP) so that the call can be handled. The service switching point uses the Signalling System No. 7 (SS7) protocols which are responsible for the call setup, management, and termination with other service switching points.

A service delivery platform (SDP) is a set of components that provides a service(s) delivery architecture for a type of service delivered to consumer, whether it be a customer or other system. Although it is commonly used in the context of telecommunications, it can apply to any system that provides a service. Although the TM Forum (TMF) is working on defining specifications in this area, there is no standard definition of SDP in industry and different players define its components, breadth, and depth in slightly different ways.

Signal Transfer Point Router that relays SS7 messages between signaling end-points and other signaling transfer points

A Signal Transfer Point (STP) is a node in an SS7 network that routes signaling messages based on their destination point code in the SS7 network. It works as a router that relays SS7 messages between signaling end-points (SEPs) and other signaling transfer points (STPs). Typical SEPs include service switching points (SSPs) and service control points (SCPs). The STP is connected to adjacent SEPs and STPs via signaling links. Based on the address fields of the SS7 messages, the STP routes the messages to the appropriate outgoing signaling link. Edge STPs can also route based upon message body content using deep packet inspection techniques, and can provide address translations and screen content to limit the transfer of messages with dubious content or sent from unreliable sources. To meet stringent reliability requirements, STPs are typically provisioned in mated pairs.

Signaling End Point

In telecommunications, a Signaling End Point (SEP) is an SS7 endpoint. This is to be contrasted with a Signal Transfer Point (STP).

M3UA is a communication protocol of the SIGTRAN family, used in telephone networks to carry signaling over Internet Protocol (IP). M3UA enables the SS7 protocol's User Parts to run over virtually any network technology breaking its limitation to telephony equipment like T-carrier, E-carrier or Asynchronous transfer mode (ATM), which highly improves scalability of the signaling networks.

References

  1. "Glossary:Service Control Point - Genesys Documentation". docs.genesys.com. Retrieved 2022-08-08.