Severe combined immunodeficient mice

Last updated

Mice with severe combined immunodeficiency (SCIDs) are often used in the research of human disease. Human immune cells are used to develop human lymphoid organs within these immunodeficient mice, and many different types of SCID mouse models have been developed. These mice allow researchers to study the human immune system and human disease in a small animal model. [1]

Contents

Discovery

The mutation causing SCIDs in mice was discovered by Melvin and Gayle Bosma in 1983 [1] in the CB/17 mouse line. [2] SCIDs occurs in these mice due to a mutation in the gene for protein kinase, DNA activated, catalytic polypeptide (PRKDC), which plays a role in repairing double-stranded DNA breaks. This has implications for B and T cell receptor development, which is dependent upon such double-stranded breaks and subsequent repairs in order to rearrange V, D, J or V and J segments. [1]

Mice with SCIDs have lymphocyte progenitors, but these cells are unable to survive to maturity. This results in a lack of B and T cells in the thymus and in the secondary lymphoid organs, such as the spleen and lymph nodes. Some SCID mice are able to produce monocytes, granulocytes, and red blood cells from the hematopoietic stem cells (HSC) present in their bone marrow. Due to their immunodeficiency, mice with SCIDs often die young if not kept under extremely sterile conditions. [1]

The absence of functional B cells results in an organism that is unable to produce antibodies. This failure to create antibodies prevents most SCID mice from rejecting non-self tissues. Some SCID mice are shown to reject skin grafts, so it has been proposed that this disease arises from a leaky mutation, meaning that some mice with SCIDs do in fact have a somewhat functional adaptive immune system. [1]

Types

There are many types of SCID mice used by researchers at present. Some examples include SCID-hu Thy/Liv mice, which are given human fetal thymus and liver cells, hu-SRC-SCID mice, which are implanted with human hematopoietic stem cells (HSC), and hu-PBL-SCID mice, in which human peripheral blood mononuclear cells have been injected. [3] Each line of mouse has different functional and nonfunctional cells, making each suited for different experiments. [2]

In particular, it has been observed that SCID mice with an added mutation for interleukin-2 receptor common gamma chain (IL2Rγ) are better able to accept transplantation of human HSC and create human B and T cells. [3] [4] Studies such as those conducted by Ito et al. have found that non-obese diabetic (NOD) SCID IL2Rγ mice are even better suited as models for tissue transplants from non-self organisms due to their lower rate of rejection of human cells. [5] NOD/SCID IL2Rγ mice have also been used to study human melanoma. [6]

Use in research

SCID mice can serve many functions in research, particularly in the study of human physiology and disease. [7] The study of human physiology in human models is often made impossible due to ethical limitations, high financial expense, and low availability of model environments. Furthermore, results gleaned from the study of human cells ex vivo may not be indicative of their functions in vivo. [3] Due to their immunodeficient state, SCID mice are able to accept human hematopoietic stem cells harvested from human bone marrow or thymus. This can lead to the development of human adaptive immune cells, such as B and T lymphocytes, within SCID mice, and for subsequent study of human cells in vivo. [1]

SCID mice have allowed for increased research on a wide range of topics, including the development and pluripotency of human HSC, [1] human-specific diseases and their interactions with the human immune system, [8] vaccination, [9] and cancer. [3] SCID mice with human immune cells are able to respond to pathogens such as viruses and create antibodies against them, which has helped scientists better understand how the human immune system protects against pathogen infection. For example, they have been used to study Dengue virus and malaria, as well as to assess the efficacy of drugs that target these diseases. [3]

It is important to note that the use of SCID mice has been questioned as a model for studying the human immune system. Some studies have suggested that after a period of time, human T cells in the immunocompromised mice become anergic, meaning that they no longer respond to stimuli. Thus, these mice may be able to host a human immune system, but one that may not be functioning properly. [2]

SCID Mice and HIV

Immune compromised mice have become of particular interest for studying the Human Immunodeficiency Virus (HIV), how it interacts with the host in human lymphoid organs, as well as how treatments work in vivo. [7] While HIV normally cannot infect mice, [1] SCID mice have been used to study HIV. [2] Prior to the use of humanized SCID mice, ape models were used to study HIV due to their genetic similarity to humans. However, due to the endangered status of chimps, the cost of maintaining them, and the slight differences between human and chimp interactions with HIV, humanized mice have been accepted as a more effective model organism for the study of this disease. [2]

NOD/SCID mice can be transplanted with human fetal liver, bone, thymus, and lymphoid cells from blood transplants, leading to the formation of human immune cells, such as B and T cells, within the mice. [9] These mice are then infected with the virus and researchers are able to study how HIV attacks the human lymphocytes and causes acquired immunodeficiency syndrome (AIDS) over time. [2] Furthermore, humanized mouse models can also be used to test potential therapies for this disease, including gene-based therapies. [3]

Notes

  1. 1 2 3 4 5 6 7 8 Owen, Judith; Punt, Jenni; Stranford, Sharon (2013). Kuby Immunology. New York: W.H. Freeman and Company.
  2. 1 2 3 4 5 6 Van Duyne, Rachel; Pedati, Caitlin (2009). "The utilization of humanized mouse models for the study of human retroviral infections". Retrovirology. 6: 76. doi: 10.1186/1742-4690-6-76 . PMC   2743631 . PMID   19674458.
  3. 1 2 3 4 5 6 Brehm, Michael; Shultz, Leonard (2010). "Humanized Mouse Models to Study Human Diseases". HHS Author Manuscripts. 17 (2): 120–5. doi:10.1097/MED.0b013e328337282f. PMC   2892284 . PMID   20150806.
  4. Brehm, Michael; Cuthbert, Amy (2010). "Parameters for establishing humanized mouse models to study human immunity: Analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation". Clinical Immunology. 135 (1): 84–98. doi:10.1016/j.clim.2009.12.008. PMC   2835837 . PMID   20096637.
  5. Ito, Mamoru; Hiramatsu, Hidefumi (2002). "NOD/SCID/IL2Rγ null mouse: an excellent recipient mouse model for engraftment of human cells". Blood. 100 (9): 3175–3182. doi: 10.1182/blood-2001-12-0207 . PMID   12384415.
  6. Karageorgis, Anastassia; Micaël, Claron (2017). "Systemic Delivery of Tumor-Targeted Bax-Derived Membrane-Active Peptides for the Treatment of Melanoma Tumors in a Humanized SCID Mouse Model". Molecular Therapy. 25 (2): 534–546. doi:10.1016/j.ymthe.2016.11.002. PMC   5368406 . PMID   28153100.
  7. 1 2 McCune, Joseph (1996). "Development and applications of the SCID-hu mouse model". Seminars in Immunology. 8 (4): 187–196. doi:10.1006/smim.1996.0024. PMID   8883141.
  8. Fanelli, Alex (2016). "Xenografting and Xenotransplantation" . Retrieved 7 January 2018.
  9. 1 2 Uchida, T; et al. (May 2017). "Usefulness of humanized cDNA-uPA/SCID mice for the study of hepatitis B virus and hepatitis C virus virology". J Gen Virol. 98 (5): 1040–1047. doi: 10.1099/jgv.0.000726 . PMID   28141486.

Related Research Articles

<span class="mw-page-title-main">Thymus</span> Endocrine gland

The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or T cells mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. The thymus is located in the upper front part of the chest, in the anterior superior mediastinum, behind the sternum, and in front of the heart. It is made up of two lobes, each consisting of a central medulla and an outer cortex, surrounded by a capsule.

<span class="mw-page-title-main">Severe combined immunodeficiency</span> Genetic disorder leading to severe impairment of the immune system

Severe combined immunodeficiency (SCID), also known as Swiss-type agammaglobulinemia, is a rare genetic disorder characterized by the disturbed development of functional T cells and B cells caused by numerous genetic mutations that result in differing clinical presentations. SCID involves defective antibody response due to either direct involvement with B lymphocytes or through improper B lymphocyte activation due to non-functional T-helper cells. Consequently, both "arms" of the adaptive immune system are impaired due to a defect in one of several possible genes. SCID is the most severe form of primary immunodeficiencies, and there are now at least nine different known genes in which mutations lead to a form of SCID. It is also known as the bubble boy disease and bubble baby disease because its victims are extremely vulnerable to infectious diseases and some of them, such as David Vetter, have become famous for living in a sterile environment. SCID is the result of an immune system so highly compromised that it is considered almost absent.

Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus like the HTL viruses, HI viruses, and BLV. It belongs to the genus Betaretrovirus. MMTV was formerly known as Bittner virus, and previously the "milk factor", referring to the extra-chromosomal vertical transmission of murine breast cancer by adoptive nursing, demonstrated in 1936, by John Joseph Bittner while working at the Jackson Laboratory in Bar Harbor, Maine. Bittner established the theory that a cancerous agent, or "milk factor", could be transmitted by cancerous mothers to young mice from a virus in their mother's milk. The majority of mammary tumors in mice are caused by mouse mammary tumor virus.

<span class="mw-page-title-main">Hematopoietic stem cell</span> Stem cells that give rise to other blood cells

Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition. In adults, haematopoiesis occurs in the red bone marrow, in the core of most bones. The red bone marrow is derived from the layer of the embryo called the mesoderm.

Lymphoproliferative disorders (LPDs) refer to a specific class of diagnoses, comprising a group of several conditions, in which lymphocytes are produced in excessive quantities. These disorders primarily present in patients who have a compromised immune system. Due to this factor, there are instances of these conditions being equated with "immunoproliferative disorders"; although, in terms of nomenclature, lymphoproliferative disorders are a subclass of immunoproliferative disorders—along with hypergammaglobulinemia and paraproteinemias.

<span class="mw-page-title-main">ZAP70 deficiency</span> Medical condition

ZAP70 deficiency, or ZAP70 deficient SCID, is a rare autosomal recessive form of severe combined immunodeficiency (SCID) resulting in a lack of CD8+ T cells. People with this disease lack the capability to fight infections, and it is fatal if untreated.

<span class="mw-page-title-main">X-linked severe combined immunodeficiency</span> Medical condition

X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells.

Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a primary immunodeficiency (PID), the immune deficiency must be inborn, not caused by secondary factors such as other disease, drug treatment, or environmental exposure to toxins. Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 430 recognized inborn errors of immunity (IEIs) as of 2019, the vast majority of which are PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, auto-inflammatory disorders, tumors, and disorders of various organs. There are currently limited treatments available for these conditions; most are specific to a particular type of PID. Research is currently evaluating the use of stem cell transplants (HSCT) and experimental gene therapies as avenues for treatment in limited subsets of PIDs.

<span class="mw-page-title-main">John Edgar Dick</span> Canadian cancer researcher

John Edgar Dick is Canada Research Chair in Stem Cell Biology, Senior Scientist at the Princess Margaret Cancer Centre, University Health Network and Professor in the Department of Molecular Genetics at the University of Toronto in Canada. Dick is credited with first identifying cancer stem cells in certain types of human leukemia. His revolutionary findings highlighted the importance of understanding that not all cancer cells are the same and thus spawned a new direction in cancer research. Dick is also known for his demonstration of a blood stem cell's ability to replenish the blood system of a mouse, his development of a technique to enable an immune-deficient mouse to carry and produce human blood, and his creation of the world's first mouse with human leukemia.

<span class="mw-page-title-main">Janus kinase 3</span> Mammalian protein found in Homo sapiens

Tyrosine-protein kinase JAK3 is a tyrosine kinase enzyme that in humans is encoded by the JAK3 gene.

The severe combined immunodeficiency (SCID) is a severe immunodeficiency genetic disorder that is characterized by the complete inability of the adaptive immune system to mount, coordinate, and sustain an appropriate immune response, usually due to absent or atypical T and B lymphocytes. In humans, SCID is colloquially known as "bubble boy" disease, as victims may require complete clinical isolation to prevent lethal infection from environmental microbes.

A NOG (NOD/Shi-scid/IL-2Rγnull) mouse is a new generation of severely immunodeficient mouse, developed by Central Institute for Experimental Animals (CIEA) in 2000. The NOG mouse accepts heterologous cells much more easily compared with any other type of immunodeficient rodent models, such as nude mouse and NOD/scid mouse. Thus, the mouse can be the best model as a highly efficient recipient of human cells to engraft, proliferate and differentiate. This unique feature offers a great opportunity for enhancing therapy researches of cancer, leukemia, visceral diseases, AIDS, and other human diseases. It also provides applications for cancer, infection, regeneration, and hematology researches.

A humanized mouse is a mouse carrying functioning human genes, cells, tissues, and/or organs. Humanized mice are commonly used as small animal models in biological and medical research for human therapeutics.

The NSG mouse is a brand of immunodeficient laboratory mice, developed and marketed by Jackson Laboratory, which carries the strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ. NSG branded mice are among the most immunodeficient described to date. NSG branded mice lack mature T cells, B cells, and natural killer (NK) cells. NSG branded mice are also deficient in multiple cytokine signaling pathways, and they have many defects in innate immunity. The compound immunodeficiencies in NSG branded mice permit the engraftment of a wide range of primary human cells, and enable sophisticated modeling of many areas of human biology and disease. NSG branded mice were developed in the laboratory of Dr. Leonard Shultz at Jackson Laboratory, which owns the NSG trade mark.

<span class="mw-page-title-main">Reticular dysgenesis</span> Medical condition

Reticular dysgenesis (RD) is a rare, inherited autosomal recessive disease that results in immunodeficiency. Individuals with RD have mutations in both copies of the AK2 gene. Mutations in this gene lead to absence of AK2 protein. AK2 protein allows hematopoietic stem cells to differentiate and proliferate. Hematopoietic stem cells give rise to blood cells.

<span class="mw-page-title-main">HIV/AIDS research</span> Field of immunology research

HIV/AIDS research includes all medical research that attempts to prevent, treat, or cure HIV/AIDS, as well as fundamental research about the nature of HIV as an infectious agent and AIDS as the disease caused by HIV.

Patient derived xenografts (PDX) are models of cancer where the tissue or cells from a patient's tumor are implanted into an immunodeficient or humanized mouse. It is a form of xenotransplantation. PDX models are used to create an environment that allows for the continued growth of cancer after its removal from a patient. In this way, tumor growth can be monitored in the laboratory, including in response to potential therapeutic options. Cohorts of PDX models can be used to determine the therapeutic efficiency of a therapy against particular types of cancer, or a PDX model from a specific patient can be tested against a range of therapies in a 'personalized oncology' approach.

Autologous CD34+ enriched cell fraction that contains CD34+ cells transduced with retroviral vector that encodes for the human ADA cDNA sequence, sold under the brand name Strimvelis, is a medication used to treat severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID).

T-cell depletion (TCD) is the process of T cell removal or reduction, which alters the immune system and its responses. Depletion can occur naturally or be induced for treatment purposes. TCD can reduce the risk of graft-versus-host disease (GVHD), which is a common issue in transplants. The idea that TCD of the allograft can eliminate GVHD was first introduced in 1958. In humans the first TCD was performed in severe combined immunodeficiency patients.

<span class="mw-page-title-main">Mouse Models of Human Cancer database</span>

The laboratory mouse has been instrumental in investigating the genetics of human disease, including cancer, for over 110 years. The laboratory mouse has physiology and genetic characteristics very similar to humans providing powerful models for investigation of the genetic characteristics of disease.