Shakealarm

Last updated

ShakeAlarm is an on-site earthquake early warning system (EEWS) developed by Weir-Jones Engineering Consultants [1] in Vancouver, British Columbia. The system functions by detecting and identifying fast moving P-waves that arrive before the slower and damaging S-waves generated from the hypocenter of an earthquake. Once ShakeAlarm has identified a candidate P-wave it will determine in less than 500 milliseconds if the following S-wave will be strong enough to be dangerous. Once the determination has been reached that an inbound S-wave might exceed acceptable levels the system can trigger the structured shutdown of critical processes - gas, electricity and water services - and can also be used for opening of fire bay doors, SMS warnings to the general population and a variety of other services to be activated before the S-wave's (shaking) impact. ShakeAlarm represents a streamlined site specific application of technology and ideas that Japan has been working with for some time on a nationwide deployment level in the form of a network. [2]

Contents

Applications

ShakeAlarm is deployed throughout British Columbia, Washington State and Oregon State - further locations on the West Coast of North America are being investigated for deployment of the ShakeAlarm system. [3]

Shakealarm has been protecting the George Massey Tunnel, (and its 50,000+ daily users) in Delta, BC against significant seismic activity since 2009. [4]

Development

ShakeAlarm is the most current technology to come from over 30 years of microseismic research and development conducted by Weir-Jones Engineering Consultants. Major contributors to the development of ShakeAlarm include Dr. Anton Zaicenco [5] Dr. Iain Weir-Jones, [6] and Sharlie Huffman [7] formerly of the BC Ministry of Transportation.

History

The earliest uses of this technology by the development company were focused on listening for propagating micro fractures in the rock hundreds of meters under the surface. This was done to monitor the effects of oil and gas sector activities like fracking. The next major development from microseismic technology was the ability to look at interactions on the surface from a buried sensor, this led to a system called Rockfall which is designed to replace fall fences on sections of railway prone to falling rock and debris. ShakeAlarm was a natural evolution when it was discovered that the technology being used was capable of detecting P-wave vibrations in the ground. [8]

Related Research Articles

Earthquake Sudden movement of the Earths crust

An earthquake is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time period. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume. The word tremor is also used for non-earthquake seismic rumbling.

Seismology Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic, atmospheric, and artificial processes such as explosions. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time is called a seismogram. A seismologist is a scientist who does research in seismology.

Seismometer Instrument that records seismic waves by measuring ground motions

A seismometer is an instrument that responds to ground noises and shaking such as caused by earthquakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The output of such a device—formerly recorded on paper or film, now recorded and processed digitally—is a seismogram. Such data is used to locate and characterize earthquakes, and to study the Earth's internal structure.

The Pacific Northwest Seismic Network, or PNSN, collects and studies ground motions from about 400 seismometers in the U.S. states of Oregon and Washington. PNSN monitors volcanic and tectonic activity, gives advice and information to the public and policy makers, and works to mitigate earthquake hazard.

Tsunami warning system

A tsunami warning system (TWS) is used to detect tsunamis in advance and issue the warnings to prevent loss of life and damage to property. It is made up of two equally important components: a network of sensors to detect tsunamis and a communications infrastructure to issue timely alarms to permit evacuation of the coastal areas. There are two distinct types of tsunami warning systems: international and regional. When operating, seismic alerts are used to instigate the watches and warnings; then, data from observed sea level height are used to verify the existence of a tsunami. Other systems have been proposed to augment the warning procedures; for example, it has been suggested that the duration and frequency content of t-wave energy is indicative of an earthquake's tsunami potential.

Earthquake engineering Interdisciplinary branch of engineering

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. Earthquake engineering is the scientific field concerned with protecting society, the natural environment, and the man-made environment from earthquakes by limiting the seismic risk to socio-economically acceptable levels. Traditionally, it has been narrowly defined as the study of the behavior of structures and geo-structures subject to seismic loading; it is considered as a subset of structural engineering, geotechnical engineering, mechanical engineering, chemical engineering, applied physics, etc. However, the tremendous costs experienced in recent earthquakes have led to an expansion of its scope to encompass disciplines from the wider field of civil engineering, mechanical engineering, nuclear engineering, and from the social sciences, especially sociology, political science, economics, and finance.

Exploration geophysics is an applied branch of geophysics and economic geology, which uses physical methods, such as seismic, gravitational, magnetic, electrical and electromagnetic at the surface of the Earth to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs.

Seismic magnitude scales are used to describe the overall strength or "size" of an earthquake. These are distinguished from seismic intensity scales that categorize the intensity or severity of ground shaking (quaking) caused by an earthquake at a given location. Magnitudes are usually determined from measurements of an earthquake's seismic waves as recorded on a seismogram. Magnitude scales vary on what aspect of the seismic waves are measured and how they are measured. Different magnitude scales are necessary because of differences in earthquakes, the information available, and the purposes for which the magnitudes are used.

Earthquake warning system

An earthquake warning system or earthquake early warning system is a system of accelerometers, seismometers, communication, computers, and alarms that is devised for notifying adjoining regions of a substantial earthquake while it is in progress. This is not the same as earthquake prediction, which is currently incapable of producing decisive event warnings.

The George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) was created by the National Science Foundation (NSF) to improve infrastructure design and construction practices to prevent or minimize damage during an earthquake or tsunami. Its headquarters were at Purdue University in West Lafayette, Indiana as part of cooperative agreement #CMMI-0927178, and it ran from 2009 till 2014. The mission of NEES is to accelerate improvements in seismic design and performance by serving as a collaboratory for discovery and innovation.

Part of a railway signaling system, a slide fence is a fence whose purpose is to prevent trains from being derailed by rockslides in mountainous areas where rockslides may occur without warning. The fence is designed to be displaced by a rock slide, causing the signaling system to display a stop aspect on nearby signals. As an alternative, a structural fence is designed to physically stop falling rocks from reaching the tracks.

Seismic base isolation Means of protecting a structure against earthquake

Seismic base isolation, also known as base isolation, or base isolation system, is one of the most popular means of protecting a structure against earthquake forces. It is a collection of structural elements which should substantially decouple a superstructure from its substructure that is in turn resting on the shaking ground, thus protecting a building or non-building structure's integrity.

Vibration control

In earthquake engineering, vibration control is a set of technical means aimed to mitigate seismic impacts in building and non-building structures.

In Japan, the Earthquake Early Warning (EEW) is a warning issued when an earthquake is detected by multiple seismometers. These warnings are primarily issued by the Japan Meteorological Agency (JMA), with guidance on how to react to them.

Earthquake-resistant structures Structures designed to protect buildings from earthquakes

Earthquake-resistant or aseismic structures are designed to protect buildings to some or greater extent from earthquakes. While no structure can be entirely immune to damage from earthquakes, the goal of earthquake-resistant construction is to erect structures that fare better during Seismic activity than their conventional counterparts. According to building codes, earthquake-resistant structures are intended to withstand the largest earthquake of a certain probability that is likely to occur at their location. This means the loss of life should be minimized by preventing collapse of the buildings for rare earthquakes while the loss of the functionality should be limited for more frequent ones.

Geothermal exploration

Geothermal exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering.

National Tsunami Warning Center Detects and analyzes earthquakes worldwide, issuing warnings to local officials

The National Tsunami Warning Center (NTWC) forms part of an international tsunami warning system (TWS). It serves as the operations center for all coastal regions of Canada and the United States, except Hawaii, the Caribbean, and the Gulf of Mexico. Headquartered in Palmer, Alaska, it is operated by the National Oceanic and Atmospheric Administration (NOAA).

ShakeAlert Earthquake early warning system for the west coast of the United States

ShakeAlert is an earthquake early warning system (EEW) in the United States, developed and operated by the United States Geological Survey (USGS) and its partners. As of 2021, the system issues alerts for the country's West Coast. It is expected that the system will be expanded to other seismically active areas of the United States in the future.

Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.

The Advanced National Seismic System (ANSS) is a collaboration of the U.S. Geological Survey (USGS) and regional, state, and academic partners that collects and analyzes data on significant earthquakes to provide near real-time information to emergency responders and officials, the news media, and the public. Such information is used to anticipate the likely severity and extent of damage, and to guide decisions on the responses needed.

References

  1. "Home". weir-jones.com.
  2. Meguro, K 2008, ‘Strategy for Taking Full Advantage of Earthquake Early Warning System for Earthquake Disaster Reduction’, 14th WCEE, Beijing, China, Oct 12-17
  3. Zaicenco, Anton; Weir-Jones, Iain (September 2012). "Lessons Learned from Operating an On-site Earthquake Early Warning System" (PDF). Proceedings, World Conference on Earthquake Engineering. 15th (2012): 10. Retrieved September 28, 2012.
  4. "TranBC: BC Ministry of Transportation and Infrastructure Online".
  5. Zaicenco, Anton. "Seismic P-Wave Polarization in the Context of On-Site Early Warning System". Research Gate. Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.
  6. Seismic P-Wave Polarization in the Context of On-Site Early Warning System. (http://www.shakealarm.com/earthquake_warning/early_warning_system.php)
  7. Seismic P-Wave Polarization in the Context of On-Site Early Warning System. (http://www.shakealarm.com/earthquake_warning/early_warning_system.php)
  8. Weir-Jones. "Weir-Jones Engineering". The Weir-Jones Group.