Sheath current

Last updated
Shielding the coaxial cable acts as a Goubau line Entstehung mantelwelle.svg
Shielding the coaxial cable acts as a Goubau line
USB cable with a ferrite bead as a sheath current filter Ferritkerndrossel.jpg
USB cable with a ferrite bead as a sheath current filter
Sheath current filter for high-power lines Sheath current filter.png
Sheath current filter for high-power lines

A sheath current is a form of charge transfer in wires. Sheath currents can run along the outer sheath of a coaxial cable. This can be caused by a geographically proximate or remote ground potential.

Sheath currents may lower the efficiency of transmission and can interfere with nearby electronic devices. In addition, sheath currents caused by differences in ground potential at the ends of a coaxial cable to common mode signals that are superimposed on the useful signal as a noise voltage. Sheath currents can be caused by ground loops.

Countermeasures against sheath currents

High-frequency signal lines may attenuate or prevent sheath currents using a sheath current filter which is applied to a coaxial cable in or near the device. In the simplest case, this is a ferrite bead, it includes the coaxial inner and outer conductor and acts as a common-mode choke. At the same time, a ferrite bead has a transformer effect, so that a useful signal is confirmed as differential-mode. To increase the inductance compared to the unwanted common mode signal component, the cable can also be repeatedly passed through or wound around the bead.

In addition, higher frequency signals are often used with a capacitive coupling filter. More information is available in the article sheath current filter.

With a balun, sheath currents can be avoided when a balanced line is connected to an unbalanced line. Without the use of baluns, sheath currents will occur on the unbalanced line. A use for this is the combination of a symmetric dipole antenna with a coaxial line.

Related Research Articles

In telecommunications and professional audio, a balanced line or balanced signal pair is an electrical circuit consisting of two conductors of the same type, both of which have equal impedances along their lengths, to ground, and to other circuits. The primary advantage of the balanced line format is good rejection of common-mode noise and interference when fed to a differential device such as a transformer or differential amplifier.

<span class="mw-page-title-main">Transmission medium</span> Conduit for signal propagation

A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While a material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

<span class="mw-page-title-main">Coaxial cable</span> Electrical cable type with concentric inner conductor, insulator, and conducting shield

Coaxial cable, or coax, is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.

<span class="mw-page-title-main">Twisted pair</span> Type of wiring used for communications

Twisted pair cabling is a type of communications cable in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pair reduces electromagnetic radiation from the pair and crosstalk between neighbouring pairs and improves rejection of external electromagnetic interference. It was invented by Alexander Graham Bell.

Balanced audio is a method of interconnecting audio equipment using balanced interfaces. This type of connection is very important in sound recording and production because it allows the use of long cables while reducing susceptibility to external noise caused by electromagnetic interference. The balanced interface guarantees that induced noise appears as common-mode voltages at the receiver which can be rejected by a differential device.

<span class="mw-page-title-main">Balun</span> Electrical device

A balun is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.

<span class="mw-page-title-main">Twin-lead</span> Two-conductor flat cable used to carry radio frequency signals

Twin lead cable is a two-conductor flat cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two, stranded copper wires, or solid copper-clad steel wires. The wires are held a fixed distance apart by a plastic ribbon that is a good insulator at radio frequencies. It is also called ribbon cable. The uniform spacing of the wires is the key to the cable's function as a transmission line: Any abrupt change in spacing would cause some of the signal to reflect back toward the source, rather than passing through. The plastic also covers and insulates the wires. The name twin lead is most often used to refer specifically to 300 Ω (Ohm) ribbon cable, the most common type, but on occasion, twin lead is used to refer to any type of parallel wire line. Parallel wire line is available with several different values of characteristic impedance such as twin lead ribbon cable (300 Ω), window line, and open wire line or ladder line (500~650 Ω).

An antenna tuner, a matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, or feedline coupler is a device connected between a radio transmitter or receiver and its antenna to improve power transfer between them by matching the impedance of the radio to the antenna's feedline. Antenna tuners are particularly important for use with transmitters. Transmitters feed power into a resistive load, very often 50 ohms, for which the transmitter is optimally designed for power output, efficiency, and low distortion. If the load seen by the transmitter departs from this design value due to improper tuning of the antenna/feedline combination the power output will change, distortion may occur and the transmitter may overheat.

In an electrical system, a ground loop or earth loop occurs when two points of a circuit are intended to have the same ground reference potential but instead have a different potential between them. This is typically caused when enough current is flowing in the connection between the two ground points to produce a voltage drop and cause the two points to be at different potentials. Current may be produced in a ground loop by electromagnetic induction.

<span class="mw-page-title-main">Ferrite bead</span> Passive component (choke) suppressing high-frequency noise in electronic circuits

A ferrite bead – also called a ferrite block, ferrite core, ferrite ring, EMI filter, or ferrite choke – is a type of choke that suppresses high-frequency electronic noise in electronic circuits.

<span class="mw-page-title-main">Unbalanced line</span>

In telecommunications and electrical engineering in general, an unbalanced line is a pair of conductors intended to carry electrical signals, which have unequal impedances along their lengths and to ground and other circuits. Examples of unbalanced lines are coaxial cable or the historic earth return system invented for the telegraph, but rarely used today. Unbalanced lines are to be contrasted with balanced lines, such as twin-lead or twisted pair which use two identical conductors to maintain impedance balance throughout the line. Balanced and unbalanced lines can be interfaced using a device called a balun.

<span class="mw-page-title-main">Choke (electronics)</span> Inductor used as a low-pass filter

In electronics, a choke is an inductor used to block higher-frequency alternating currents (AC) while passing direct current (DC) and lower-frequency ACs in a circuit. A choke usually consists of a coil of insulated wire often wound on a magnetic core, although some consist of a doughnut-shaped ferrite bead strung on a wire. The choke's impedance increases with frequency. Its low electrical resistance passes both AC and DC with little power loss, but its reactance limits the amount of AC passed.

<span class="mw-page-title-main">Braid-breaker</span>

A braid-breaker is a filter that prevents television interference (TVI). In many cases, TVI is caused by a high field strength of a nearby high frequency (HF) transmitter, the aerial down lead plugged into the back of the TV acts as a longwire antenna or as a simple vertical element. The radio frequency (RF) current flowing through the tuner of the TV tends to generate harmonics which then spoil the viewing.

A radio transmitter or receiver is connected to an antenna which emits or receives the radio waves. The antenna feed system or antenna feed is the cable or conductor, and other associated equipment, which connects the transmitter or receiver with the antenna and makes the two devices compatible. In a radio transmitter, the transmitter generates an alternating current of radio frequency, and the feed system feeds the current to the antenna, which converts the power in the current to radio waves. In a radio receiver, the incoming radio waves excite tiny alternating currents in the antenna, and the feed system delivers this current to the receiver, which processes the signal.

<span class="mw-page-title-main">Triaxial cable</span>

Triaxial cable, often referred to as triax for short, is a type of electrical cable similar to coaxial cable, but with the addition of an extra layer of insulation and a second conducting sheath. Triax provides greater bandwidth and rejection of interference than coax, but is more expensive.

In electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity. Moreover, because of its comparatively low losses at high frequencies, ferrite is extensively used for the cores of RF transformers and inductors in applications such as switched-mode power supplies and ferrite loopstick antennas for AM radio receivers.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

Various types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

In electrical engineering, a common-mode signal is the identical component of voltage present at both input terminals of an electrical device. In telecommunication, the common-mode signal on a transmission line is also known as longitudinal voltage.

<span class="mw-page-title-main">Sheath current filter</span> Electronic components

Sheath current filters are electronic components that can prevent noise signals travelling in the sheath of sheathed cables, which can cause interference. Using sheath current filters, ground loops causing mains hum and high frequency common-mode signals can be prevented.

<span class="mw-page-title-main">Unbalanced circuit</span>

In electrical engineering, an unbalanced circuit is one in which the transmission properties between the ports of the circuit are different for the two poles of each port. It is usually taken to mean that one pole of each port is bonded to a common potential but more complex topologies are possible. This common point is commonly called ground or earth but it may well not actually be connected to electrical ground at all.

References