Shortcuts to adiabaticity

Last updated

Shortcuts to adiabaticity (STA) are fast control protocols to drive the dynamics of system without relying on the adiabatic theorem. The concept of STA was introduced in a 2010 paper by Xi Chen et al. [1] Their design can be achieved using a variety of techniques. [2] [3] A universal approach is provided by counterdiabatic driving, [4] also known as transitionless quantum driving. [5] Motivated by one of authors systematic study of dissipative Landau-Zener transition, the key idea was demonstrated earlier by a group of scientists from China, Greece and USA in 2000, as steering an eigenstate to destination. [6] Counterdiabatic driving has been demonstrated in the laboratory using a time-dependent quantum oscillator. [7]

The use of counterdiabatic driving requires to diagonalize the system Hamiltonian, limiting its use in many-particle systems. In the control of trapped quantum fluids, the use of symmetries such as scale invariance and the associated conserved quantities has allowed to circumvent this requirement. [8] [9] [10] STA have also found applications in finite-time quantum thermodynamics to suppress quantum friction. [11] Fast nonadiabatic strokes of a quantum engine have been implemented using a three-dimensional interacting Fermi gas. [12] [13]

The use of STA has also been suggested to drive a quantum phase transition. [14] In this context, the Kibble-Zurek mechanism predicts the formation of topological defects. While the implementation of counterdiabatic driving across a phase transition requires complex many-body interactions, feasible approximate controls can be found. [15] [16] [17]

Outside of physics, STA have been applied to population genetics to derive a formalism to admit finite time control of the speed and trajectory in evolving populations, with an eye towards manipulating large populations of organisms causing human disease as an evolutionary therapy method, or toward more efficient directed evolution. [18]

Related Research Articles

<span class="mw-page-title-main">Tetraquark</span> Exotic meson composed of four valence quarks

In particle physics, a tetraquark is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron which lies outside the conventional quark model classification. A number of different types of tetraquark have been observed.

A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. As of 2015, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

<span class="mw-page-title-main">Quantum point contact</span>

A quantum point contact (QPC) is a narrow constriction between two wide electrically conducting regions, of a width comparable to the electronic wavelength.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions.

<span class="mw-page-title-main">Landau–Zener formula</span> Formula for the probability that a system will change between two energy states.

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.

Daniel Amihud Lidar is the holder of the Viterbi Professorship of Engineering at the University of Southern California, where he is a professor of electrical engineering, chemistry, physics and astronomy. He is the director and co-founder of the USC Center for Quantum Information Science & Technology (CQIST) as well as scientific director of the USC-Lockheed Martin Quantum Computing Center, notable for his research on control of quantum systems and quantum information processing.

<span class="mw-page-title-main">Subir Sachdev</span> Indian physicist

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018, and was elected Foreign Member of the Royal Society ForMemRS in 2023. He was a co-editor of the Annual Review of Condensed Matter Physics 2017–2019, and is Editor-in-Chief of Reports on Progress in Physics 2022-.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

<span class="mw-page-title-main">Piers Coleman</span> British-American physicist

Piers Coleman is a British-born theoretical physicist, working in the field of theoretical condensed matter physics. Coleman is professor of physics at Rutgers University in New Jersey and at Royal Holloway, University of London.

In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

<span class="mw-page-title-main">Time crystal</span> Structure that repeats in time; a novel type or phase of non-equilibrium matter

In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is already in its quantum ground state. Because of this, the motion of the particles does not really represent kinetic energy like other motion; it has "motion without energy". Time crystals were first proposed theoretically by Frank Wilczek in 2012 as a time-based analogue to common crystals – whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged periodically in both space and time. Several different groups have demonstrated matter with stable periodic evolution in systems that are periodically driven. In terms of practical use, time crystals may one day be used as quantum computer memory.

A quantum heat engine is a device that generates power from the heat flow between hot and cold reservoirs. The operation mechanism of the engine can be described by the laws of quantum mechanics. The first realization of a quantum heat engine was pointed out by Scovil and Schulz-DuBois in 1959, showing the connection of efficiency of the Carnot engine and the 3-level maser. Quantum refrigerators share the structure of quantum heat engines with the purpose of pumping heat from a cold to a hot bath consuming power first suggested by Geusic, Schulz-DuBois, De Grasse and Scovil. When the power is supplied by a laser the process is termed optical pumping or laser cooling, suggested by Wineland and Hänsch. Surprisingly heat engines and refrigerators can operate up to the scale of a single particle thus justifying the need for a quantum theory termed quantum thermodynamics.

<span class="mw-page-title-main">Sandu Popescu</span> British physicist

Sandu Popescu is a Romanian-British physicist working in the foundations of quantum mechanics and quantum information.

<span class="mw-page-title-main">Dirac cone</span> Quantum effect in some non-metals

In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. In these materials, at energies near the Fermi level, the valence band and conduction band take the shape of the upper and lower halves of a conical surface, meeting at what are called Dirac points.

Adolfo del Campo is a Spanish physicist and a professor of physics at the University of Luxembourg. He is best known for his work in quantum control and theoretical physics. He is notable as one of the pioneers of shortcuts to adiabaticity. He was elected as a Fellow of the American Physical Society in 2023.

Randomized benchmarking is an experimental method for measuring the average error rates of quantum computing hardware platforms. The protocol estimates the average error rates by implementing long sequences of randomly sampled quantum gate operations. Randomized benchmarking is the industry-standard protocol used by quantum hardware developers such as IBM and Google to test the performance of the quantum operations.

Adrian Kent is a British theoretical physicist, Professor of Quantum Physics at the University of Cambridge, member of the Centre for Quantum Information and Foundations, and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His research areas are the foundations of quantum theory, quantum information science and quantum cryptography. He is known as the inventor of relativistic quantum cryptography. In 1999 he published the first unconditionally secure protocols for bit commitment and coin tossing, which were also the first relativistic cryptographic protocols. He is a co-inventor of quantum tagging, or quantum position authentication, providing the first schemes for position-based quantum cryptography. In 2005 he published with Lucien Hardy and Jonathan Barrett the first security proof of quantum key distribution based on the no-signalling principle.

Christopher John Pethick is a British theoretical physicist, specializing in many-body theory, ultra-cold atomic gases, and the physics of neutron stars and stellar collapse.

References

  1. Chen, X.; et al. (2010). "Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity". Physical Review Letters. 104 (6): 063002. arXiv: 0910.0709 . Bibcode:2010PhRvL.104f3002C. doi:10.1103/PhysRevLett.104.063002. PMID   20366818. S2CID   1372315.
  2. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. (2019). "Shortcuts to adiabaticity: Concepts, methods, and applications". Reviews of Modern Physics. 91 (4): 045001. arXiv: 1904.08448 . Bibcode:2019RvMP...91d5001G. doi:10.1103/RevModPhys.91.045001. hdl: 10261/204556 . S2CID   120374889.
  3. Torrontegui, E.; et al. (2013). "Shortcuts to adiabaticity". Advances in Atomic, Molecular, and Optical Physics. Advances in Atomic, Molecular, and Optical Physics. Vol. 62. pp. 117–169. CiteSeerX   10.1.1.752.9829 . doi:10.1016/B978-0-12-408090-4.00002-5. ISBN   9780124080904. S2CID   118553513.
  4. Demirplak, M.; Rice, S. A. (2003). "Adiabatic Population Transfer with Control Fields". The Journal of Physical Chemistry A. 107 (46): 9937–9945. Bibcode:2003JPCA..107.9937D. doi:10.1021/jp030708a.
  5. Berry, M. V. (2009). "Transitionless quantum driving". Journal of Physics A: Mathematical and Theoretical. 42 (36): 365303. Bibcode:2009JPhA...42J5303B. doi:10.1088/1751-8113/42/36/365303. S2CID   121345668.
  6. Emmanouilidou, A.; Zhao, X.-G.; Ao, A.; Niu, Q. (2000). "Steering an Eigenstate to Destination". Physical Review Letters. 85 (8): 1626–1629. Bibcode:2000PhRvL..85.1626E. doi:10.1103/PhysRevLett.85.1626. PMID   10970574.
  7. An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan (2016). "Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space". Nature Communications. 7: 12999. arXiv: 1601.05551 . Bibcode:2016NatCo...712999A. doi:10.1038/ncomms12999. PMC   5052658 . PMID   27669897.
  8. del Campo, A. (2013). "Shortcuts to adiabaticity by counter-diabatic driving". Physical Review Letters. 111 (10): 100502. arXiv: 1306.0410 . Bibcode:2013PhRvL.111j0502D. doi:10.1103/PhysRevLett.111.100502. PMID   25166641. S2CID   119271970.
  9. Deffner, S.; et al. (2014). "Classical and quantum shortcuts to adiabaticity for scale-invariant driving". Physical Review X. 4 (2): 021013. arXiv: 1401.1184 . Bibcode:2014PhRvX...4b1013D. doi:10.1103/PhysRevX.4.021013. S2CID   6758148.
  10. Deng, S.; et al. (2018). "Shortcuts to adiabaticity in the strongly-coupled regime: nonadiabatic control of a unitary Fermi gas". Physical Review A. 97 (1): 013628. arXiv: 1610.09777 . Bibcode:2018PhRvA..97a3628D. doi:10.1103/PhysRevA.97.013628. S2CID   119264108.
  11. del Campo, A.; et al. (2014). "More bang for your buck: Towards super-adiabatic quantum engines". Scientific Reports. 4: 6208. Bibcode:2014NatSR...4E6208C. doi:10.1038/srep06208. PMC   4147366 . PMID   25163421.
  12. Deng, S.; et al. (2018). "Superadiabatic quantum friction suppression in finite-time thermodynamics". Science Advances. 4 (4): eaar5909. arXiv: 1711.00650 . Bibcode:2018SciA....4.5909D. doi:10.1126/sciadv.aar5909. PMC   5922798 . PMID   29719865.
  13. Diao, P.; et al. (2018). "Shortcuts to adiabaticity in Fermi gases". New Journal of Physics. 20 (10): 105004. arXiv: 1807.01724 . Bibcode:2018NJPh...20j5004D. doi: 10.1088/1367-2630/aae45e .
  14. del Campo, A.; Rams, M. M.; Zurek, W. H. (2012). "Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum Ising model". Physical Review Letters. 109 (11): 115703. arXiv: 1206.2670 . Bibcode:2012PhRvL.109k5703D. doi: 10.1103/PhysRevLett.109.115703 . PMID   23005647.
  15. Takahashi, K. (2013). "Transitionless quantum driving for spin systems". Physical Review E. 87 (6): 062117. arXiv: 1209.3153 . Bibcode:2013PhRvE..87f2117T. doi:10.1103/PhysRevE.87.062117. PMID   23848637. S2CID   28545144.
  16. Saberi, H.; et al. (2014). "Adiabatic tracking of quantum many-body dynamics". Physical Review A. 90 (6): 060301(R). arXiv: 1408.0524 . Bibcode:2014PhRvA..90f0301S. doi: 10.1103/PhysRevA.90.060301 .
  17. Campbell, S.; et al. (2015). "Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model". Physical Review Letters. 114 (17): 177206. arXiv: 1410.1555 . Bibcode:2015PhRvL.114q7206C. doi:10.1103/PhysRevLett.114.177206. hdl: 10447/126172 . PMID   25978261. S2CID   22450078.
  18. Iram, S. (2021). "Controlling the speed and trajectory of evolution with counterdiabatic driving". Nature Physics. 17 (1): 135–142. arXiv: 1912.03764 . Bibcode:2021NatPh..17..135I. doi:10.1038/s41567-020-0989-3.