Skin friction drag

Last updated

Skin friction drag is a type of aerodynamic or hydrodynamic drag, which is resistant force exerted on an object moving in a fluid. Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object. Skin friction drag is generally expressed in terms of the Reynolds number, which is the ratio between inertial force and viscous force.

Contents

Total drag can be decomposed into a skin friction drag component and a pressure drag component, where pressure drag includes all other sources of drag including lift-induced drag. [1] In this conceptualisation, lift-induced drag is an artificial abstraction, part of the horizontal component of the aerodynamic reaction force. Alternatively, total drag can be decomposed into a parasitic drag component and a lift-induced drag component, where parasitic drag is all components of drag except lift-induced drag. In this conceptualisation, skin friction drag is a component of parasitic drag.

Flow and effect on skin friction drag

Laminar flow over a body occurs when layers of the fluid move smoothly past each other in parallel lines. In nature, this kind of flow is rare. As the fluid flows over an object, it applies frictional forces to the surface of the object which works to impede forward movement of the object; the result is called skin friction drag. Skin friction drag is often the major component of parasitic drag on objects in a flow.

The flow over a body may begin as laminar. As a fluid flows over a surface shear stresses within the fluid slow additional fluid particles causing the boundary layer to grow in thickness. At some point along the flow direction, the flow becomes unstable and becomes turbulent. Turbulent flow has a fluctuating and irregular pattern of flow which is made obvious by the formation of vortices. While the turbulent layer grows, the laminar layer thickness decreases. This results in a thinner laminar boundary layer which, relative to laminar flow, depreciates the magnitude of friction force as fluid flows over the object.

Skin friction coefficient

Definition

The skin friction coefficient is defined as: [2]

where:

The skin friction coefficient is a dimensionless skin shear stress which is nondimensionalized by the dynamic pressure of the free stream. The skin friction coefficient is defined at any point of a surface that is subjected to the free stream. It will vary at different positions. A fundamental fact in aerodynamics states that . [3] This immediately implies that laminar skin friction drag is smaller than turbulent skin friction drag, for the same inflow.

The skin friction coefficient is a strong function of the Reynolds number , as increases decreases.

Laminar flow

Blasius solution

where:

  • , which is the Reynolds number.
  • is the distance from the reference point at which a boundary layer starts to form.

The above relation derived from Blasius boundary layer, which assumes constant pressure throughout the boundary layer and a thin boundary layer. [4] The above relation shows that the skin friction coefficient decreases as the Reynolds number () increases.

Transitional flow

The Computational Preston Tube Method (CPM)

CPM, suggested by Nitsche, [5] estimates the skin shear stress of transitional boundary layers by fitting the equation below to a velocity profile of a transitional boundary layer. (Karman constant), and (skin shear stress) are determined numerically during the fitting process.

where:

  • is a distance from the wall.
  • is a speed of a flow at a given .
  • is the Karman constant, which is lower than 0.41, the value for turbulent boundary layers, in transitional boundary layers.
  • is the Van Driest constant, which is set to 26 in both transitional and turbulent boundary layers.
  • is a pressure parameter, which is equal to when is a pressure and is the coordinate along a surface where a boundary layer forms.

Turbulent flow

Prandtl's one-seventh-power law

The above equation, which is derived from Prandtl's one-seventh-power law, [6] provided a reasonable approximation of the drag coefficient of low-Reynolds-number turbulent boundary layers. [7] Compared to laminar flows, the skin friction coefficient of turbulent flows lowers more slowly as the Reynolds number increases.

Skin friction drag

A total skin friction drag force can be calculated by integrating skin shear stress on the surface of a body.

Relationship between skin friction and heat transfer

In the point of view of engineering, calculating skin friction is useful in estimating not only total frictional drag exerted on an object but also convectional heat transfer rate on its surface. [8] This relationship is well developed in the concept of Reynolds analogy, which links two dimensionless parameters: skin friction coefficient (Cf), which is a dimensionless frictional stress, and Nusselt number (Nu), which indicates the magnitude of convectional heat transfer. Turbine blades, for example, require the analysis of heat transfer in their design process since they are imposed in high temperature gas, which can damage them with the heat. Here, engineers calculate skin friction on the surface of turbine blades to predict heat transfer occurred through the surface.

Effects of skin friction drag

A 1974 NASA study found that for subsonic aircraft, skin friction drag is the largest component of drag, causing about 45% of the total drag. For supersonic and hypersonic aircraft, the figures are 35% and 25% respectively. [9]

A 1992 NATO study found that for a typical civil transport aircraft, skin friction drag accounted for almost 48% of total drag, followed by induced drag at 37%. [10] [11]

Reducing skin friction drag

There are two main techniques for reducing skin friction drag: delaying the boundary layer transition, and modifying the turbulence structures in a turbulent boundary layer. [12]

One method to modify the turbulence structures in a turbulent boundary layer is the use of riblets. [13] [14] Riblets are small grooves in the surface of the aircraft, aligned with the direction of flow. [15] Tests on an Airbus A320 found riblets caused a drag reduction of almost 2%. [13] Another method is the use of large eddy break-up (LEBU) devices. [13] However, some research into LEBU devices has found a slight increase in drag. [16]

See also

Related Research Articles

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

<span class="mw-page-title-main">Boundary layer</span> Layer of fluid in the immediate vicinity of a bounding surface

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

<span class="mw-page-title-main">Parasitic drag</span> Aerodynamic resistance against the motion of an object

Parasitic drag, also known as profile drag, is a type of aerodynamic drag that acts on any object when the object is moving through a fluid. Parasitic drag is a combination of form drag and skin friction drag. It affects all objects regardless of whether they are capable of generating lift.

<span class="mw-page-title-main">Shear stress</span> Component of stress coplanar with a material cross section

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

<span class="mw-page-title-main">Bingham plastic</span> Material which is solid at low stress but becomes viscous at high stress

In materials science, a Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after Eugene C. Bingham who proposed its mathematical form.

<span class="mw-page-title-main">Large eddy simulation</span> Mathematical model for turbulence

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

The oceanic, wind driven Ekman spiral is the result of a force balance created by a shear stress force, Coriolis force and the water drag. This force balance gives a resulting current of the water different from the winds. In the ocean, there are two places where the Ekman spiral can be observed. At the surface of the ocean, the shear stress force corresponds with the wind stress force. At the bottom of the ocean, the shear stress force is created by friction with the ocean floor. This phenomenon was first observed at the surface by the Norwegian oceanographer Fridtjof Nansen during his Fram expedition. He noticed that icebergs did not drift in the same direction as the wind. His student, the Swedish oceanographer Vagn Walfrid Ekman, was the first person to physically explain this process.

<span class="mw-page-title-main">Plug flow</span> Simple model of fluid flow in a pipe

In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.

The Fanning friction factor, named after John Thomas Fanning, is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density:

The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). It is used to characterize heat transfer in forced convection flows.

<span class="mw-page-title-main">Ekman layer</span> Force equilibrium layer in a liquid

The Ekman layer is the layer in a fluid where there is a force balance between pressure gradient force, Coriolis force and turbulent drag. It was first described by Vagn Walfrid Ekman. Ekman layers occur both in the atmosphere and in the ocean.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Law of the wall</span> Relation of flow speed to wall distance

In fluid dynamics, the law of the wall states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid region. This law of the wall was first published in 1930 by Hungarian-American mathematician, aerospace engineer, and physicist Theodore von Kármán. It is only technically applicable to parts of the flow that are close to the wall, though it is a good approximation for the entire velocity profile of natural streams.

<span class="mw-page-title-main">Ekman transport</span> Net transport of surface water perpendicular to wind direction

Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. Ekman transport occurs when ocean surface waters are influenced by the friction force acting on them via the wind. As the wind blows it casts a friction force on the ocean surface that drags the upper 10-100m of the water column with it. However, due to the influence of the Coriolis effect, the ocean water moves at a 90° angle from the direction of the surface wind. The direction of transport is dependent on the hemisphere: in the northern hemisphere, transport occurs at 90° clockwise from wind direction, while in the southern hemisphere it occurs at 90° anticlockwise. This phenomenon was first noted by Fridtjof Nansen, who recorded that ice transport appeared to occur at an angle to the wind direction during his Arctic expedition of the 1890s. Ekman transport has significant impacts on the biogeochemical properties of the world's oceans. This is because it leads to upwelling and downwelling in order to obey mass conservation laws. Mass conservation, in reference to Ekman transfer, requires that any water displaced within an area must be replenished. This can be done by either Ekman suction or Ekman pumping depending on wind patterns.

In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the flux of horizontal momentum applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification. It is one of the components of the air–sea interaction, with others being the atmospheric pressure on the water surface, as well as the exchange of energy and mass between the water and the atmosphere.

Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary Layer

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

In physical oceanography and fluid mechanics, the Miles-Phillips mechanism describes the generation of wind waves from a flat sea surface by two distinct mechanisms. Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind. The Miles-Phillips mechanism is a physical interpretation of these wind-generated surface waves.
Both mechanisms are applied to gravity-capillary waves and have in common that waves are generated by a resonance phenomenon. The Miles mechanism is based on the hypothesis that waves arise as an instability of the sea-atmosphere system. The Phillips mechanism assumes that turbulent eddies in the atmospheric boundary layer induce pressure fluctuations at the sea surface. The Phillips mechanism is generally assumed to be important in the first stages of wave growth, whereas the Miles mechanism is important in later stages where the wave growth becomes exponential in time.

References

  1. Gowree, Erwin Ricky (20 May 2014). Influence of Attachment Line Flow on Form Drag (doctoral). p. 18. Retrieved 22 March 2022.
  2. Anderson Jr., John D. (2011). Fundamentals of Aerodynamics (5th edition) Textbook. pp. 25–26.
  3. Anderson Jr., John D. (2011). Fundamentals of Aerodynamics (5th edition) Textbook. p. 75.
  4. White, Frank (2011). Fluid Mechanics. New York City, NY: McGraw-Hill. pp. 477–478. ISBN   9780071311212.
  5. Nitsche, W.; Thünker, R.; Haberland, C. (1985). A computational Preston tube method. Turbulent shear flows, 4. pp. 261–276.
  6. Prandtl, L. (1925). "Bericht uber Untersuchungen zur ausgebildeten Turbulenz". Zeitschrift für Angewandte Mathematik und Mechanik. 5 (2): 136–139. Bibcode:1925ZaMM....5..136P. doi:10.1002/zamm.19250050212.
  7. White, Frank (2011). Fluid Mechanics. New York City, NY: McGraw-Hill. pp. 484–485. ISBN   9780071311212.
  8. Incropera, Frank; Bergman, Theodore; Lavine, Adrienne (2013). Foundations of Heat Transfer. Hoboken, NJ: Wiley. pp. 402–404. ISBN   9780470646168.
  9. Fischer, Michael C.; Ash, Robert L. (March 1974). "A general review of concepts for reducing skin friction, including recommendations for future studies. NASA Technical Memorandum TM X-2894" (PDF). Retrieved 22 March 2022.{{cite journal}}: Cite journal requires |journal= (help)
  10. Robert, JP (March 1992). Cousteix, J (ed.). "Drag reduction: an industrial challenge". Special Course on Skin Friction Drag Reduction. AGARD. AGARD Report 786: 2-13.
  11. Coustols, Eric (1996). Meier, GEA; Schnerr, GH (eds.). "Control of Turbulent Flows for Skin Friction Drag Reduction". Control of Flow Instabilities and Unsteady Flows: 156. ISBN   9783709126882 . Retrieved 24 March 2022.
  12. Duan, Lian; Choudhari, Meelan M. "Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers" . Retrieved 22 March 2022.{{cite journal}}: Cite journal requires |journal= (help)
  13. 1 2 3 Viswanath, P. R (1 August 2002). "Aircraft viscous drag reduction using riblets". Progress in Aerospace Sciences. 38 (6): 571–600. Bibcode:2002PrAeS..38..571V. doi:10.1016/S0376-0421(02)00048-9. ISSN   0376-0421 . Retrieved 22 March 2022.
  14. Nieuwstadt, F. T. M.; Wolthers, W.; Leijdens, H.; Krishna Prasad, K.; Schwarz-van Manen, A. (1 June 1993). "The reduction of skin friction by riblets under the influence of an adverse pressure gradient". Experiments in Fluids. 15 (1): 17–26. Bibcode:1993ExFl...15...17N. doi:10.1007/BF00195591. ISSN   1432-1114. S2CID   122304080 . Retrieved 22 March 2022.
  15. García-mayoral, Ricardo; Jiménez, Javier (2011). "Drag reduction by riblets". Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 369 (1940): 1412–1427. Bibcode:2011RSPTA.369.1412G. doi: 10.1098/rsta.2010.0359 . ISSN   1364-503X. JSTOR   41061598. PMID   21382822. S2CID   2785024 . Retrieved 22 March 2022.
  16. Alfredsson, P. Henrik; Örlü, Ramis (1 June 2018). "Large-Eddy BreakUp Devices – a 40 Years Perspective from a Stockholm Horizon". Flow, Turbulence and Combustion. 100 (4): 877–888. doi:10.1007/s10494-018-9908-4. ISSN   1573-1987. PMC   6044242 . PMID   30069144.

Fundamentals of Flight by Richard Shepard Shevell