Snowboard binding rotating device

Last updated

Some Snowboard binding rotating devices are designed to minimize the torque force that occurs when a snowboarder has one foot out of the binding and one locked on the board. The rotating device allows the snowboarder to turn the locked foot straight into the direction of the tip of the snowboard without removing their boot from the boot binding. Like this they can push themselves forward like a skateboarder. Others are designed to be free rotating the entire time you ride. Both feet are free to turn and adjust to the optimal position for a certain terrain. These subtle changes in foot position help keep stress off of ones knees as well as help ones control down the slopes.

Contents

Background

Snowboard boot bindings are normally screwed onto the snowboard in a permanent orientation which is almost perpendicular to the direction of travel of the snowboard. When a snowboarder reaches the bottom of a run, the rear boot is typically released from its binding to allow the snowboarder to propel himself forward across relatively flat snow. Because the front foot in the snowboard binding is at an angle to forward motion, the snowboarder experiences discomfort and tension on his leg, knee and foot joint.

Four to 8 percent of snowboarding injuries take place while the person is waiting in ski-lift lines or entering and exiting ski lifts. Snowboarders push themselves forward with a free foot while in the ski-lift line, leaving the other foot (usually that of the lead leg) locked on the board at a 45- to 90-degree angle, placing a large torque force on this leg and predisposing the person to knee injury if a fall occurs. [1] [2]

Approximately 15% [3] of snowboarding injuries are ankle injuries, with half of those being LPT or other fractures. The mechanism of injury in “snowboarder’s fracture” is generally due to dorsiflexion of the ankle with inversion of the hind foot. This action occurs during a landing from an aerial maneuver or jump, especially when the landing is over rotated. The primary stress on the rider’s foot is due to the foot being locked rigidly to the board. There is no additional torque or force compelling the lower leg to turn counter to the upper leg and torso.

When a free rotating binding is placed between the rider’s boot binding and the board, the effect of the torque due to the landing is reduced. The predominant force on the lower leg is the torque from the upper leg and torso. Since the foot is free to rotate on the board, the leg naturally rotates in the same direction as the upper leg, and the ability of the foot to rotate accommodates this.

The two motions described leave the foot, ankle and knee in the best position to continue riding after landing, increasing the probability of a successful landing, improving overall enjoyment, and reducing risk of injury from a less-than-optimal landing.

Techniques

The rotating device is usually installed between snowboard and binding or integrated into the binding. There are two primary types of rotating bindings.

The first type allows the snowboarder to rotate the snowboard boot binding in relation to the snowboard by pulling upon a tether or releasing a lock. Repeating and rotating in the opposite direction leads back to the original angle position. These bindings are mainly either for comfort in the line or for one-time adjustments at the start of a run. Except for locked-in adjustments at the start of each run, these bindings are essentially the same as regular bindings except for the ease of adjusting foot angles.

The second type of rotational binding allows freedom of movement at all times, including throughout a ride. These help remove stress from your knees while riding and allow you to adjust your foot angle to an ideal position for a specific terrain. The rider's feet naturally assume the best position and angles for the fall lines and bumps in the ride, just as when skateboarding, during or wake-surfing. This is also true in landing jumps. The rider's feet will naturally assume the best position given the rider's motion and orientation prior to landing, and will move to the best position after landing to continue the run and set up the next action. This type of binding also allows the rider to orient his or her feet comfortably while standing and moving in lift lines. On the lift itself, the board can hang vertically with the foot straight up and down, relieving all stress on the lift and reducing interference with other boards and skis.

The free-rotating bindings are becoming very popular when snowkiting due their ability to release stress and tension on ankles and knees.

Products

Related Research Articles

<span class="mw-page-title-main">Snowboard</span> Winter sport equipment

Snowboards are boards where the user places both feet, usually secured, to the same board. The board itself is wider than most skis, with the ability to glide on snow. Snowboards widths are between 6 and 12 inches or 15 to 30 centimeters. Snowboards are differentiated from monoskis by the stance of the user. In monoskiing, the user stands with feet inline with direction of travel, whereas in snowboarding, users stand with feet transverse to the longitude of the board. Users of such equipment may be referred to as snowboarders. Commercial snowboards generally require extra equipment such as bindings and special boots which help secure both feet of a snowboarder, who generally ride in an upright position. These types of boards are commonly used by people at ski hills, mountains, backcountry, or resorts for leisure, entertainment, and competitive purposes in the activity called snowboarding.

<span class="mw-page-title-main">Snowboarding</span> Snow sport involving a single board

Snowboarding is a recreational and competitive activity that involves descending a snow-covered surface while standing on a snowboard that is almost always attached to a rider's feet. It features in the Winter Olympic Games and Winter Paralympic Games.

Boardsports are active outdoor sports that are played with some sort of board as the primary equipment. These sports take place on a variety of terrains, from paved flat-ground and snow-covered hills to water and air. Most boardsports are considered action sports or extreme sports, and thus often appeal to youth. Some board sports were marginalized in the past. However, many board sports are gaining mainstream recognition, and with this recognition, they have enjoyed wider broadcast, sponsorship and inclusion in institutional sporting events, including the Olympic Games.

<span class="mw-page-title-main">Alpine skiing</span> Sport of skiing downhill

Alpine skiing, or downhill skiing, is the pastime of sliding down snow-covered slopes on skis with fixed-heel bindings, unlike other types of skiing, which use skis with free-heel bindings. Whether for recreation or for sport, it is typically practiced at ski resorts, which provide such services as ski lifts, artificial snow making, snow grooming, restaurants, and ski patrol.

<span class="mw-page-title-main">Human leg</span> Lower extremity or limb of the human body (foot, lower leg, thigh and hip)

The human leg, in the general word sense, is the entire lower limb of the human body, including the foot, thigh or sometimes even the hip or gluteal region. However, the definition in human anatomy refers only to the section of the lower limb extending from the knee to the ankle, also known as the crus or, especially in non-technical use, the shank. Legs are used for standing, and all forms of locomotion including recreational such as dancing, and constitute a significant portion of a person's mass. Female legs generally have greater hip anteversion and tibiofemoral angles, but shorter femur and tibial lengths than those in males.

<span class="mw-page-title-main">Ski binding</span> Connects skier boot to snow ski

A ski binding is a device that connects a ski boot to the ski. Before the 1933 invention of ski lifts, skiers went uphill and down and cross-country on the same gear. As ski lifts became more prevalent, skis—and their bindings—became increasingly specialized, differentiated between alpine (downhill) and Nordic styles of skiing. Until the point of divergence in the mid-20th century, bindings held the toe of a flexible, leather boot against the ski and allowed the heel to rise off the ski, typically with a form of strap or cable around the heel.

Ski boots are footwear used in skiing to provide a way to attach the skier to skis using ski bindings. The ski/boot/binding combination is used to effectively transmit control inputs from the skier's legs to the snow.

<span class="mw-page-title-main">Terrain park</span>

A terrain park or snow park is an outdoor recreation area containing terrain that allows skiers, snowboarders and snowbikers to perform tricks. Terrain parks have their roots in skateparks and many of the features are common to both.

<span class="mw-page-title-main">Backcountry skiing</span> Skiing in unmarked or unpatrolled areas

Backcountry skiing (US), also called off-piste (Europe), alpine touring, or out-of-area, is skiing in the backcountry on unmarked or unpatrolled areas either inside or outside a ski resort's boundaries. This contrasts with alpine skiing, which is typically done on groomed trails benefiting from a ski patrol. Unlike ski touring, backcountry skiing can include the use of ski lifts including snowcats and helicopters. Recent improvements in equipment have increased the popularity of the sport.

<span class="mw-page-title-main">Motorcycle boot</span>

Motorcycle boots are associated with motorcycle riders and range from above ankle to below knee boots. They have an outside of a typical boot but a low heel to control the motorcycle. To improve motorcycle safety, motorcycle boots are generally made from a thick, heavy leather and may include energy absorbing and load spreading padding, metal, plastic and/or composite materials to protect the motorcycle rider's feet, ankles and legs in an accident. For use in wet weather, some boots have a waterproof membrane lining such as Gore-Tex or SympaTex.

<span class="mw-page-title-main">Carved turn</span>

A carved turn is a skiing and snowboarding term for the technique of turning by shifting the ski or snowboard onto its edges. When edged, the sidecut geometry causes the ski to bend into an arc, and the ski naturally follows this arc shape to produce a turning motion. The carve is efficient in allowing the skier to maintain speed because, unlike the older stem Christie and parallel turns, the skis don't create drag by sliding sideways.

<span class="mw-page-title-main">Static trapeze</span>

Static trapeze, also known as fixed trapeze, is a type of circus art performed on the trapeze. In contrast to the other forms of trapeze, on static trapeze the bars and ropes mainly stay in place.

<span class="mw-page-title-main">Orthotics</span> Medical specialty that focuses on the design and application of orthoses

Orthotics is a medical specialty that focuses on the design and application of orthoses, or braces. An orthosis is "an externally applied device used to influence the structural and functional characteristics of the neuromuscular and skeletal systems."

Swivler is a manufacturer of snowboard bindings, snowboard binding rotating devices, LBEV, and accessories. The company is headquartered in Woodland, Washington.

<span class="mw-page-title-main">Spademan binding</span>

Spademan was a type of ski binding, one of a number of "plate bindings" that were popular in alpine skiing during the 1970s. It used a bronze plate screwed into the bottom of the boot as its connection point, held to the ski by a clamp-like mechanism that grasped the side of the plate. Unlike conventional bindings, the Spademan could release in any direction, in response to any force or torque. It provided greatly improved protection compared to contemporary designs, which generally allowed release of the toe to the sides and heel directly forward, keeping the foot attached in any other fall direction.

<span class="mw-page-title-main">Look Nevada</span>

Look's Nevada, released in 1950, was the first recognizably modern alpine ski binding. The Nevada was only the toe portion of the binding, and was used with a conventional cable binding for the heel. An updated version was introduced in 1962 with a new step-in heel binding, the Grand Prix. These basic mechanisms formed the basis for LOOK bindings for over 40 years, changing mainly in name and construction materials. The Nevada toe pattern is almost universal among bindings today.

<span class="mw-page-title-main">Cable binding</span>

Cable bindings, also known as Kandahar bindings or bear-trap bindings, are a type of ski bindings widely used through the middle of the 20th century. It was invented and brand-named after the Kandahar Ski Club in 1929 by ski racer and engineer Guido Reuge. They were replaced in alpine skiing by heel-and-toe "safety bindings" in the mid-1960s.

<span class="mw-page-title-main">Rosemount Ski Boots</span>

Rosemount Ski Boots introduced one of the earliest all-plastic ski boots for the downhill skiing market, competing with Bob Lange for the title of "first". Rosemount's design was easily distinguished by its use of the uncommon "side-entry" method for putting the boot on, which was rare at the time and is no longer used.

<span class="mw-page-title-main">Kick (association football)</span> Skill in association football

A kick is a skill in association football in which a player strikes the ball with their foot. Association football, more commonly referred to as football and also known as soccer, is a sport played world-wide, with up to 265 million people around the world participating on a yearly basis. Kicking is one of the most difficult skills to acquire in football. This skill is also vitally important, as kicking is the way in which passes are made and the primary means by which goals are scored.

This glossary of skiing and snowboarding terms is a list of definitions of terms and jargon used in skiing, snowboarding, and related winter sports.

References

  1. Davidson TM, Laliotis AT (1996) Snowboarding injuries, a four-year study with comparison with alpine ski injuries. West J Med; p.231
  2. Callé SC, Evans JT. (1995) Snowboarding trauma. J Pediatr Surg; p.791
  3. Owens, MD, Brett (January 2018). "Comprehensive Review of Skiing and Snowboarding Injuries". Jour Amer Acad Ortthopaedic Surgeons. 26 (1): e1–e10. doi:10.5435/JAAOS-D-16-00832. PMID   29206691.
  4. "Home". broko.co.
  5. "Home". quickstance.com.