Social entropy

Last updated

Social entropy is a sociological theory that evaluates social behaviours using a method based on the second law of thermodynamics. [1] The equivalent of entropy in a social system is considered to be wealth or residence location. [2] The term "social entropy" was first used by physicist Peter Tait in 1874. [3] The theory was introduced by Kenneth D. Bailey in 1990 [4] and recently extended by Roumen Tsekov, who related social entropy to liberty and economic freedom. [5]

Related Research Articles

<span class="mw-page-title-main">Entropy</span> Property of a thermodynamic system

Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change, and information systems including the transmission of information in telecommunication.

Information theory is the mathematical study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field, in applied mathematics, is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering.

Systems theory is the transdisciplinary study of systems, i.e. cohesive groups of interrelated, interdependent components that can be natural or artificial. Every system has causal boundaries, is influenced by its context, defined by its structure, function and role, and expressed through its relations with other systems. A system is "more than the sum of its parts" by expressing synergy or emergent behavior.

<span class="mw-page-title-main">Thermodynamics</span> Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

<span class="mw-page-title-main">Josiah Willard Gibbs</span> American scientist (1839–1903)

Josiah Willard Gibbs was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in transforming physical chemistry into a rigorous inductive science. Together with James Clerk Maxwell and Ludwig Boltzmann, he created statistical mechanics, explaining the laws of thermodynamics as consequences of the statistical properties of ensembles of the possible states of a physical system composed of many particles. Gibbs also worked on the application of Maxwell's equations to problems in physical optics. As a mathematician, he invented modern vector calculus.

<span class="mw-page-title-main">Maxwell's demon</span> Thought experiment of 1867

Maxwell's demon is a thought experiment that would hypothetically violate the second law of thermodynamics. It was proposed by the physicist James Clerk Maxwell in 1867. In his first letter, Maxwell referred to the entity as a "finite being" or a "being who can play a game of skill with the molecules". Lord Kelvin would later call it a "demon".

<span class="mw-page-title-main">Second law of thermodynamics</span> Physical law for entropy and heat

The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter. Another statement is: "Not all heat can be converted into work in a cyclic process."

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

<span class="mw-page-title-main">Non-equilibrium thermodynamics</span> Branch of thermodynamics

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.

<span class="mw-page-title-main">Ludwig Boltzmann</span> Austrian physicist and philosopher (1844–1906)

Ludwig Eduard Boltzmann was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodynamics. In 1877 he provided the current definition of entropy, , where Ω is the number of microstates whose energy equals the system's energy, interpreted as a measure of statistical disorder of a system. Max Planck named the constant kB the Boltzmann constant.

<span class="mw-page-title-main">Laws of thermodynamics</span> Observational basis of thermodynamics

The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships between them. They state empirical facts that form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general and are applicable in other natural sciences.

<span class="mw-page-title-main">Adrian Bejan</span> Romanian-American professor

Adrian Bejan is a Romanian-American professor who has made contributions to modern thermodynamics and developed his constructal law. He is J. A. Jones Distinguished Professor of Mechanical Engineering at Duke University and author of the books Design in Nature, The Physics of Life, Freedom and Evolution and Time And Beauty: Why Time Flies And Beauty Never Dies

The mathematical expressions for thermodynamic entropy in the statistical thermodynamics formulation established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s are similar to the information entropy by Claude Shannon and Ralph Hartley, developed in the 1940s.

<span class="mw-page-title-main">Thermoeconomics</span> Heterodox economic theory

Thermoeconomics, also referred to as biophysical economics, is a school of heterodox economics that applies the laws of statistical mechanics to economic theory. Thermoeconomics can be thought of as the statistical physics of economic value and is a subfield of econophysics.

In thermodynamics, the interpretation of entropy as a measure of energy dispersal has been exercised against the background of the traditional view, introduced by Ludwig Boltzmann, of entropy as a quantitative measure of disorder. The energy dispersal approach avoids the ambiguous term 'disorder'. An early advocate of the energy dispersal conception was Edward A. Guggenheim in 1949, using the word 'spread'.

Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy.

Kenneth D. Bailey is an American sociologist, systems scientist and professor of sociology at the University of California in Los Angeles.

Peter Andrew Corning is an American biologist, consultant, and complex systems scientist, Director of the Institute for the Study of Complex Systems, in Seattle, Washington. He is known especially for his work on the causal role of synergy in evolution.

<span class="mw-page-title-main">Temperature</span> Physical quantity of hot and cold

Temperature is a physical quantity that expresses quantitatively the attribute of hotness or coldness. Temperature is measured with a thermometer. It reflects the kinetic energy of the vibrating and colliding atoms making up a substance.

<span class="mw-page-title-main">Cybernetics</span> Transdisciplinary field concerned with regulatory and purposive systems

Cybernetics is a wide-ranging field concerned with circular causal processes such as feedback. The field is named after an example of circular causal feedback—that of steering a ship. In steering a ship, the helmsperson adjusts their steering in continual response to the effect it is observed as having, forming a feedback loop through which a steady course can be maintained in a changing environment, responding to disturbances from cross winds and tide. Cybernetics is concerned with the principles of circular causal processes such as steering however they are embodied, including in ecological, technological, biological, cognitive and social systems and also in the context of practical activities such as designing, learning, managing, etc. Cybernetics' transdisciplinary character has meant that it intersects with a number of other fields, leading to it having both wide influence and diverse interpretations.

References

  1. "Social Entropy: A Paradigmatic Approach of the second law of thermodynamics to an unusual domain". www.nexialinstitute.com. Retrieved 14 January 2018.
  2. Parra-Luna, Francisco (2009). Systems Science and Cybernetics- Volume I. p. 165. ISBN   978-1848262027.
  3. www.eoht.info https://www.eoht.info/page/Social%20entropy . Retrieved 2023-12-14.{{cite web}}: Missing or empty |title= (help)
  4. Ritzer, George (2004). Encyclopedia of Social Theory. p. 314. ISBN   1452265461.
  5. Tsekov, Roumen (2023). "Social Thermodynamics 2.0". arXiv: 2307.05984 .{{cite journal}}: Cite journal requires |journal= (help)

Further reading