Software Communications Architecture

Last updated

The Software Communications Architecture (SCA) is an open architecture framework that defines a standard way for radios to instantiate, configure, and manage waveform applications running on their platform. The SCA separates waveform software from the underlying hardware platform, facilitating waveform software portability and re-use to avoid costs of redeveloping waveforms. The latest version is SCA 4.1.

Contents

Overview

The SCA is published by the Joint Tactical Networking Center (JTNC). This architecture was developed to assist in the development of Software Defined Radio (SDR) communication systems, capturing the benefits of recent technology advances which are expected to greatly enhance interoperability of communication systems and reduce development and deployment costs. The architecture is also applicable to other embedded, distributed-computing applications such as Communications Terminals or Electronic Warfare (EW). The SCA has been structured to:

  1. Provide for portability of applications software between different SCA implementations,
  2. Leverage commercial standards to reduce development cost,
  3. Reduce software development time through the ability to reuse design modules, and
  4. Build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as those of military applications. Since the SCA is intended to become a self-sustaining standard, a wide cross-section of industry has been invited to participate in the development and validation of the SCA. The SCA is not a system specification but an implementation independent set of rules that constrain the design of systems to achieve the objectives listed above.

Core Framework

The Core Framework (CF) defines the essential "core" set of open software interfaces and profiles that provide for the deployment, management, interconnection, and intercommunication of software application components in an embedded, distributed-computing communication system. In this sense, all interfaces defined in the SCA are part of the CF.

Standard Waveform Application Programming Interfaces (APIs)

The Standard Waveform APIs define the key software interfaces that allow the waveform application and radio platform to interact. SCA use the APIs to separate waveform software from the underlying hardware platform, facilitating waveform software portability and re-use to avoid costs of redeveloping waveforms.

Development Tools

Top News

Related Research Articles

A computing platform, digital platform, or software platform is an environment in which software is executed. It may be the hardware or the operating system (OS), a web browser and associated application programming interfaces, or other underlying software, as long as the program code is executed. Computing platforms have different abstraction levels, including a computer architecture, an OS, or runtime libraries. A computing platform is the stage on which computer programs can run.

<span class="mw-page-title-main">Software-defined radio</span> Radio communication system implemented in software

Software-defined radio (SDR) is a radio communication system where components that conventionally have been implemented in analog hardware are instead implemented by means of software on a personal computer or embedded system. While the concept of SDR is not new, the rapidly evolving capabilities of digital electronics render practical many processes which were once only theoretically possible.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices and interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. SoCs may contain digital and also analog, mixed-signal and often radio frequency signal processing functions.

OpenMAX, often shortened as "OMX", is a non-proprietary and royalty-free cross-platform set of C-language programming interfaces. It provides abstractions for routines that are especially useful for processing of audio, video, and still images. It is intended for low power and embedded system devices that need to efficiently process large amounts of multimedia data in predictable ways, such as video codecs, graphics libraries, and other functions for video, image, audio, voice and speech.

Nucleus RTOS is a real-time operating system (RTOS) produced by the Embedded Software Division of Mentor Graphics, a Siemens Business, supporting 32- and 64-bit embedded system platforms. The operating system (OS) is designed for real-time embedded systems for medical, industrial, consumer, aerospace, and Internet of things (IoT) uses. Nucleus was released first in 1993. The latest version is 3.x, and includes features such as power management, process model, 64-bit support, safety certification, and support for heterogeneous computing multi-core system on a chip (SOCs) processors.

REST is a software architectural style that was created to guide the design and development of the architecture for the World Wide Web. REST defines a set of constraints for how the architecture of a distributed, Internet-scale hypermedia system, such as the Web, should behave. The REST architectural style emphasises uniform interfaces, independent deployment of components, the scalability of interactions between them, and creating a layered architecture to promote caching to reduce user-perceived latency, enforce security, and encapsulate legacy systems.

<span class="mw-page-title-main">Joint Tactical Radio System</span> Proposed US military radio system

The Joint Tactical Radio System (JTRS) aimed to replace existing radios in the American military with a single set of software-defined radios that could have new frequencies and modes (“waveforms”) added via upload, instead of requiring multiple radio types in ground vehicles, and using circuit board swaps in order to upgrade. JTRS has seen cost overruns and full program restructurings, along with cancellation of some parts of the program. JTRS is widely seen as one of the DoD's greatest acquisition failures, having spent $6B over 15 years without delivering a radio.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

AUTomotive Open System ARchitecture (AUTOSAR) is a development partnership of automotive interested parties founded in 2003. It pursues the objective to create and establish an open and standardized software architecture for automotive electronic control units (ECUs). Goals include the scalability to different vehicle and platform variants, transferability of software, the consideration of availability and safety requirements, a collaboration between various partners, sustainable use of natural resources, and maintainability during the product lifecycle.

<span class="mw-page-title-main">Component-based software engineering</span> Branch of software engineering

Component-based software engineering (CBSE), also called component-based development (CBD), is a style of software engineering that aims to build software out of loosely-coupled, modular components. It emphasizes the separation of concerns among different parts of a software system.

Objective Interface Systems, Inc. is a computer communications software and hardware company. The company's headquarters are in Herndon, Virginia, USA. OIS develops, manufactures, licenses, and supports software and hardware products that generally fit into one or more of the following markets:

<span class="mw-page-title-main">PikeOS</span> Real-time operating system

PikeOS is a commercial hard real-time operating system (RTOS) featuring a separation kernel-based hypervisor. This hypervisor supports multiple logical partition types for various operating systems (OS) and applications, each referred to as a GuestOS. PikeOS is designed to facilitate the development of certifiable smart devices for the Internet of Things (IoT) by adhering to the high standards of quality, safety, and security across different industries. In instances where memory management units (MMU) are not present but memory protection units (MPU) are available on controller-based systems, PikeOS for MPU is an option for critical real-time applications, ensuring safety and security.

Communications servers are open, standards-based computing systems that operate as a carrier-grade common platform for a wide range of communications applications and allow equipment providers to add value at many levels of the system architecture.

The Multicore Association was founded in 2005. Multicore Association is a member-funded, non-profit, industry consortium focused on the creation of open standard APIs, specifications, and guidelines that allow system developers and programmers to more readily adopt multicore technology into their applications.

<span class="mw-page-title-main">Open-system environment reference model</span>

Open-system environment (OSE) reference model (RM) or OSE reference model (OSE/RM) is a 1990 reference model for enterprise architecture. It provides a framework for describing open system concepts and defining a lexicon of terms, that can be agreed upon generally by all interested parties.

Robotics middleware is middleware to be used in complex robot control software systems.

<span class="mw-page-title-main">Etherstack</span>

Etherstack wireless telecommunication communications solutions for defence, emergency services and national security.

<span class="mw-page-title-main">Multifunctional Information Distribution System</span> Communication component of Link-16

Multifunctional Information Distribution System (MIDS) is the NATO name for the communication component of Link-16.

<span class="mw-page-title-main">Wireless Innovation Forum</span>

Established in 1996, the Wireless Innovation Forum is a non-profit "mutual benefit corporation" dedicated to advocating for spectrum innovation and advancing radio technologies that support essential or critical communications worldwide. Forum members bring a broad base of experience in Software Defined Radio, Cognitive Radio and Dynamic Spectrum Access technologies in diverse markets and at all levels of the wireless value chain to address emerging wireless communications requirements. The forum acts as a venue for its members to collaborate to achieve these objectives.

The Open Group Future Airborne Capability Environment was formed in 2010 to define an open avionics environment for all military airborne platform types. Today, it is a real-time software-focused professional group made up of industry suppliers, customers, academia, and users. The FACE approach is a government-industry software standard and business strategy for acquisition of affordable software systems that promotes innovation and rapid integration of portable capabilities across programs. The FACE Consortium provides a vendor-neutral forum for industry and government to work together to develop and consolidate the open standards, best practices, guidance documents, and business strategy necessary to result in: