Sommerfeld–Kossel displacement law

Last updated

The Sommerfeld–Kossel displacement law states that the first spark (singly ionized) spectrum of an element is similar in all details to the arc (neutral) spectrum of the element preceding it in the periodic table. Likewise, the second (doubly ionized) spark spectrum of an element is similar in all details to the first (singly ionized) spark spectrum of the element preceding it, or to the arc (neutral) spectrum of the element with atomic number two less, and so forth. [1]

Hence, the spectra of C I (neutral carbon), N II (singly ionized nitrogen), and O III (doubly ionized oxygen) atoms are similar, apart from shifts of the spectra to shorter wavelengths. [1] C I, N II, and O III all have the same number of electrons, six, and the same ground-state electron configuration:

Electron configuration property of an atom

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, using the notation explained below.

. [2]

The law was discovered by and named after Arnold Sommerfeld and Walther Kossel, who set it forth in a paper submitted to Verhandungen der Deutschen Physikalischen Gesellschaft in early 1919. [3]

Arnold Sommerfeld physicist

Arnold Johannes Wilhelm Sommerfeld, was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored a large number of students for the new era of theoretical physics. He served as doctoral supervisor for many Nobel Prize winners in physics and chemistry.

Walther Kossel German physicist

Walther Ludwig Julius Kossel was a German physicist known for his theory of the chemical bond, Sommerfeld–Kossel displacement law of atomic spectra, the Kossel-Stranski model for crystal growth, and the Kossel effect. Walther was the son of Albrecht Kossel who won the Nobel Prize in Physiology or Medicine in 1910.

Related Research Articles

Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. It is primarily concerned with the arrangement of electrons around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term atom includes ions.[citation needed]

Atomic orbital mathematical function that describes the wave-like behavior of either one electron or a pair of electrons in an atom

In atomic theory and quantum mechanics, an atomic orbital is a mathematical function that describes the wave-like behavior of either one electron or a pair of electrons in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term atomic orbital may also refer to the physical region or space where the electron can be calculated to be present, as defined by the particular mathematical form of the orbital.

Beta decay decay where electrons (β-, beta minus) or positrons (β+, positron emission) are emitted

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta ray is emitted from an atomic nucleus. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino, or conversely a proton is converted into a neutron by the emission of a positron with a neutrino, thus changing the nuclide type. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

Bohr model atomic model introduced by Niels Bohr in 1913

In atomic physics, the Rutherford–Bohr model or Bohr model or Bohr diagram, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by revolving electrons —similar to the structure of the Solar System, but with attraction provided by electrostatic forces rather than gravity. After the cubic model (1902), the plum-pudding model (1904), the Saturnian model (1904), and the Rutherford model (1911) came the Rutherford–Bohr model or just Bohr model for short (1913). The improvement to the Rutherford model is mostly a quantum physical interpretation of it. The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen. While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model explain the reason for the structure of the Rydberg formula, it also provided a justification for its empirical results in terms of fundamental physical constants.

Hydrogen atom atom of element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

Atomic, molecular, and optical physics (AMO) is the study of matter-matter and light-matter interactions; at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.

Atomic radius measure of the size of a chemical elements atoms

The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding cloud of electrons. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Three widely used definitions of atomic radius are: Van der Waals radius, ionic radius, and covalent radius.

Ionization energy minimum amount of energy required to remove an electron from an atom or molecule in the gaseous state

In physics and chemistry, ionization energy (American English spelling) or ionisation energy (British English spelling), denoted Ei, is the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom or molecule. It is quantitatively expressed as

Emission spectrum

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify the elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

Atomic spectroscopy is the study of the electromagnetic radiation absorbed and emitted by atoms. Since unique elements have characteristic (signature) spectra, atomic spectroscopy, specifically the electromagnetic spectrum or mass spectrum, is applied for determination of elemental compositions. It can be divided by atomization source or by the type of spectroscopy used. In the latter case, the main division is between optical and mass spectrometry. Mass spectrometry generally gives significantly better analytical performance, but is also significantly more complex. This complexity translates into higher purchase costs, higher operational costs, more operator training, and a greater number of components that can potentially fail. Because optical spectroscopy is often less expensive and has performance adequate for many tasks, it is far more common Atomic absorption spectrometers are one of the most commonly sold and used analytical devices.

Hund's rule of maximum multiplicity is a rule based on observation of atomic spectra, which is used to predict the ground state of an atom or molecule with one or more open electronic shells. The rule states that for a given electron configuration, the lowest energy term is the one with the greatest value of spin multiplicity. This implies that if two or more orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs. The rule, discovered by Friedrich Hund in 1925, is of important use in atomic chemistry, spectroscopy, and quantum chemistry, and is often abbreviated to Hund's rule, ignoring Hund's other two rules.

In quantum mechanics, the principal quantum number is one of four quantum numbers which are assigned to all electrons in an atom to describe that electron's state. As a discrete variable, the principal quantum number is always an integer. As n increases, the number of electronic shells increases and the electron spends more time farther from the nucleus. As n increases, the electron is also at a higher energy and is, therefore, less tightly bound to the nucleus. The total energy of an electron, as described below, is a negative inverse quadratic function of the principal quantum number n.

Stark effect optical phenomenon in physics

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For majority of spectral lines, the Stark effect is either linear or quadratic with a high accuracy.

Spectroscopic notation provides a way to specify atomic ionization states, atomic orbitals, and molecular orbitals.

Moseleys law empirical law concerning the characteristic x-rays that are emitted by atoms

Moseley's law is an empirical law concerning the characteristic x-rays that are emitted by atoms. The law was discovered and published by the English physicist Henry Moseley in 1913. It is historically important in quantitatively justifying the conception of the nuclear model of the atom, with all, or nearly all, positive charges of the atom located in the nucleus, and associated on an integer basis with atomic number. Until Moseley's work, "atomic number" was merely an element's place in the periodic table, and was not known to be associated with any measurable physical quantity. Moseley was able to show that the frequencies of certain characteristic X-rays emitted from chemical elements are proportional to the square of a number which was close to the element's atomic number; a finding which supported Van den Broek and Bohr's model of the atom in which the atomic number is the same as the number of positive charges in the nucleus of the atom. In brief, the law states that the square root of the frequency of the emitted x-ray is proportional to the atomic number.

Kossel may refer to:

In atomic physics, a two-electron atom or helium-like ion is a quantum mechanical system consisting of one nucleus with a charge of Ze and just two electrons. This is the first case of many-electron systems where the Pauli exclusion principle plays a central role.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

References

Gerhard Herzberg German-Canadian physicist and physical chemist

Gerhard Heinrich Friedrich Otto Julius Herzberg, was a German-Canadian pioneering physicist and physical chemist, who won the Nobel Prize for Chemistry in 1971, "for his contributions to the knowledge of electronic structure and geometry of molecules, particularly free radicals". Herzberg's main work concerned atomic and molecular spectroscopy. He is well known for using these techniques that determine the structures of diatomic and polyatomic molecules, including free radicals which are difficult to investigate in any other way, and for the chemical analysis of astronomical objects. Herzberg served as Chancellor of Carleton University in Ottawa, Ontario, Canada from 1973 to 1980.

Jagdish Mehra was an Indian-American historian of science.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.

Notes

  1. 1 2 Herzberg, 1945, p. 81.
  2. Striganov, 1968, pp. 83, 121, 155.
  3. Mehra, 1982, p. 330.