Sophorolipid

Last updated

A sophorolipid is a surface-active glycolipid compound that can be synthesized by a selected number of non-pathogenic yeast species. [1] They are potential bio-surfactants due to their biodegradability and low eco-toxicity.

Contents

Structure and properties

Sophorolipids are glycolipids consisting of a hydrophobic fatty acid tail of 16 or 18 carbon atoms and a hydrophilic carbohydrate head sophorose, a glucose-derived di-saccharide with an unusual β-1,2 bond and can be acetylated on the 6′- and/or 6′′- positions. One terminal or sub terminal hydroxylated fatty acid is β-glycosidically linked to the sophorose module. The carboxylic end of this fatty acid is either free (acidic or open form) or internally esterified at the 4′′ or in some rare cases at the 6′- or 6′′-position (lactonic form). [2] The physicochemical and biological properties of sophorolipids are significantly influenced by the distribution of the lactone vs. acidic forms produced in the fermentative broth. In general, lactone sophorolipids are more efficient in reducing surface tension and are better antimicrobial agents, whereas acidic sophorolipids display better foaming properties. Acetyl groups can also lower the hydrophilicity of sophorolipids and enhance their antiviral and cytokine stimulating effects. [3]

Honey-like viscous, oily, acidic sophorolipids produced by solid state fermentation (SSF) of starmerella bombicola. Physcical appearance of sophorolipids.png
Honey-like viscous, oily, acidic sophorolipids produced by solid state fermentation (SSF) of starmerella bombicola.

Sophorolipids are produced by various non pathogenic yeast species such as Candida apicola, Rhodotorula bogoriensis, [5] Wickerhamiella domercqiae, [6] and Starmerella bombicola. [7] [8] Recent research has meant sophorolipids can be recovered during a fermentation using a gravity separator in a loop with the bioreactor, enabling the production of >770 g/L sophorolipid at a productivity 4.24 g/L/h, some of the highest values seen in a fermentation process [9] Desirable properties of biosurfactants are biodegradability and low toxicity. [10] [11] Sophorolipids produced by several yeasts belonging to candida and the starmerella clade, [12] [13] and Rhamnolipid produced by Pseudomonas aeruginosa [14] etc.

Besides biodegradability, low toxicity, and high production potential, sophorolipids have a high surface and interfacial activity. Sophorolipids are reported to lower surface tension (ST) of water from 72 to 30-35 mN/m and the interfacial tension (IT) water/hexadecane from 40 to 1 mN/m. [15] In addition to this, sophorolipids are reported to function under wide ranges of temperatures, pressures and ionic strengths; and they also possess a number of other useful biological activities including Antimicrobial, [5] virucidal, [3] Anticancer, Immuno-modulatory properties. [5]

Research

A detailed and comprehensive literature review on the various aspects of sophorolipids production (e.g. producing micro-organisms, bio-synthetic pathway, effect of medium components and other fermentation conditions and downstream process of sophorolipids is available in the published work of Van Bogaert et al. [5] [16] This work also discusses potential application of sophorolipids (and their derivatives) as well as the potential for genetic engineering strains to enhance sophorolipid yields. Researchers have focused on optimization of sophorolipid production in submerged fermentation, [17] [18] but some efforts have also investigated the possibility of sophorololipid production using solid state fermentation (SSF). [4] The production process can be significantly impacted by the specific properties of the carbon and oil substrates used; and several inexpensive alternatives to more traditional substrates have been investigated. These potential substrates include: biodiesel by-product streams, [19] waste frying oil, [20] [21] restaurant waste oil, [22] industrial fatty acid residues, [23] mango seed fat, [24] and soybean dark oil. The use of most of these substrates have resulted in lower yields compared to traditional fermentation substrates.

Chemical modifications of sophorolipids, and polysophorolipids

To enhance the performance of surfactant properties of natural sophorolipids, chemical modification methods have been actively pursued. [25] Recently, researchers demonstrated the possibility of applying sophorolipids as building blocks via ring-opening metathesis polymerization for a new type of polymers, known as polysophorolipids which show promising potentials in biomaterials applications. [26]

Related Research Articles

<span class="mw-page-title-main">Polyhydroxyalkanoates</span> Polyester family

Polyhydroxyalkanoates or PHAs are polyesters produced in nature by numerous microorganisms, including through bacterial fermentation of sugars or lipids. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of bioplastics.

Acidogenesis is the second stage in the four stages of anaerobic digestion:

Industrial fermentation is the intentional use of fermentation in manufacturing products useful to humans. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins, baker's yeast, and starter cultures for lactic acid bacteria used in cheesemaking.

The rumen, also known as a paunch, is the largest stomach compartment in ruminants and the larger part of the reticulorumen, which is the first chamber in the alimentary canal of ruminant animals. The rumen's microbial favoring environment allows it to serve as the primary site for microbial fermentation of ingested feed. The smaller part of the reticulorumen is the reticulum, which is fully continuous with the rumen, but differs from it with regard to the texture of its lining.

<span class="mw-page-title-main">Amphiphile</span> Hydrophilic and lipophilic chemical compound

An amphiphile, or amphipath, is a chemical compound possessing both hydrophilic and lipophilic (fat-loving) properties. Such a compound is called amphiphilic or amphipathic. Common amphiphilic compound is surfactant, which is a main ingredient of soaps, detergents, and lipoproteins. The phospholipid amphiphiles are the major structural component of cell membranes.

In biology, syntrophy, synthrophy, or cross-feeding is the phenomenon of one species feeding on the metabolic products of another species to cope up with the energy limitations by electron transfer. In this type of biological interaction, metabolite transfer happens between two or more metabolically diverse microbial species that live in close proximity to each other. The growth of one partner depends on the nutrients, growth factors, or substrates provided by the other partner. Thus, syntrophism can be considered as an obligatory interdependency and a mutualistic metabolism between two different bacterial species.

<span class="mw-page-title-main">Surfactin</span> Chemical compound

Surfactin is a cyclic lipopeptide, commonly used as an antibiotic for its capacity as a surfactant. It is an amphiphile capable of withstanding hydrophilic and hydrophobic environments. The Gram-positive bacterial species Bacillus subtilis produces surfactin for its antibiotic effects against competitors. Surfactin showcases antibacterial, antiviral, antifungal, and hemolytic effects.

Biosurfactant usually refers to surfactants of microbial origin. Most of the biosurfactants produced by microbes are synthesized extracellularly and many microbes are known to produce biosurfactants in large relative quantities. Some are of commercial interest. As a secondary metabolite of microorganisms, biosurfactants can be processed by the cultivation of biosurfactant producing microorganisms in the stationary phase on many sorts of low-priced substrates like biochar, plant oils, carbohydrates, wastes, etc. High-level production of biosurfactants can be controlled by regulation of environmental factors and growth circumstances.

Long-chain alcohol oxidase is one of two enzyme classes that oxidize long-chain or fatty alcohols to aldehydes. It has been found in certain Candida yeast, where it participates in omega oxidation of fatty acids to produce acyl-CoA for energy or industrial use, as well as in other fungi, plants, and bacteria.

<span class="mw-page-title-main">National Institute of Molecular Biology and Biotechnology</span>

The National Institute of Molecular Biology and Biotechnology, also known as NIMBB, is a research institute of the University of the Philippines (UP). It has four branches distributed across various UP campuses, namely: UP Diliman (NIMBB-Diliman), UP Los Baños (BIOTECH-UPLB), UP Manila and UP Visayas.

Dark fermentation is the fermentative conversion of organic substrate to biohydrogen. It is a complex process manifested by diverse groups of bacteria, involving a series of biochemical reactions using three steps similar to anaerobic conversion. Dark fermentation differs from photofermentation in that it proceeds without the presence of light.

Starmerella is a genus of fungi within the Saccharomycetales order. The relationship of this taxon to other taxa within the order is unknown, and it has not yet been placed with certainty into any family. Although, the GBIF list the family as Phaffomycetaceae. Several members of the Starmerella clade are associated with flowers and flower-visiting insects like bees and bumblebees; these yeasts cope well with high sugar niches. Many strains (species) of the Starmerella clade, including Starmerella bombicola and Candida apicola are known to produce sophorolipids which are carbohydrate-based, amphiphilic biosurfactants.

Single cell oil, also known as Microbial oil consists of the intracellular storage lipids, triacyglycerols. It is similar to vegetable oil, another biologically produced oil. They are produced by oleaginous microorganisms, which is the term for those bacteria, molds, algae and yeast, which can accumulate 20% to 80% lipids of their biomass. The accumulation of lipids take place by the end of logarithmic phase and continues during station phase until carbon source begins to reduce with nutrition limitation.

<span class="mw-page-title-main">Rhamnolipid</span> Chemical compound

Rhamnolipids are a class of glycolipid produced by Pseudomonas aeruginosa, amongst other organisms, frequently cited as bacterial surfactants. They have a glycosyl head group, in this case a rhamnose moiety, and a 3-(hydroxyalkanoyloxy)alkanoic acid (HAA) fatty acid tail, such as 3-hydroxydecanoic acid.

, , qūniè, jiǔqū, or jiǔmǔ is a type of East Asian dried fermentation starter grown on a solid medium and used in the production of traditional Chinese alcoholic beverages. The Chinese character 曲/麹 is romanised as in pinyin, chhu or chu in other transcription systems. The literal translation of jiǔqū is "liquor ferment", although "liquor mold" or "liquor starter" are adequate descriptions.

<span class="mw-page-title-main">Yeast in winemaking</span> Yeasts used for alcoholic fermentation of wine

The role of yeast in winemaking is the most important element that distinguishes wine from fruit juice. In the absence of oxygen, yeast converts the sugars of the fruit into alcohol and carbon dioxide through the process of fermentation. The more sugars in the grapes, the higher the potential alcohol level of the wine if the yeast are allowed to carry out fermentation to dryness. Sometimes winemakers will stop fermentation early in order to leave some residual sugars and sweetness in the wine such as with dessert wines. This can be achieved by dropping fermentation temperatures to the point where the yeast are inactive, sterile filtering the wine to remove the yeast or fortification with brandy or neutral spirits to kill off the yeast cells. If fermentation is unintentionally stopped, such as when the yeasts become exhausted of available nutrients and the wine has not yet reached dryness, this is considered a stuck fermentation.

Ustilagic acid is an organic compound with the formula C36H64O18. The acid is a cellobiose lipid produced by the corn smut fungus Ustilago maydis under conditions of nitrogen starvation. The acid was discovered in 1950 and was proved to be an amphipathic glycolipid with surface active properties. The name comes from Latin ustus which means burnt and refers to the scorched appearance of the smut fungi.

A proteolipid is a protein covalently linked to lipid molecules, which can be fatty acids, isoprenoids or sterols. The process of such a linkage is known as protein lipidation, and falls into the wider category of acylation and post-translational modification. Proteolipids are abundant in brain tissue, and are also present in many other animal and plant tissues. They include ghrelin, a peptide hormone associated with feeding. Many proteolipids are composed of proteins covalenently bound to fatty acid chains, often granting them an interface for interacting with biological membranes. They are not to be confused with lipoproteins, a kind of spherical assembly made up of many molecules of lipids and some apolipoproteins.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

Edible oil refining is a set of processes or treatments necessary to turn vegetable raw oil into edible oil.

References

  1. Ribeiro, Isabel; Castro, Matilde; Ribeiro, Maria (2013). "Sophorolipids". Applications of Microbial Engineering. pp. 367–407. doi:10.1201/b15250-15. ISBN   978-1-4665-8577-5.
  2. Davila, A.-M.; Marchal, R.; Vandecasteele, J.-P., Sophorose lipid production from lipidic precursors: Predictive evaluation of industrial substrates. Journal of Industrial Microbiology 1994, 13 (4), 249-257.
  3. 1 2 Shah, V.; Doncel, G. F.; Seyoum, T.; Eaton, K. M.; Zalenskaya, I.; Hagver, R.; Azim, A.; Gross, R., Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 2005, 49 (10), 4093-4100.
  4. 1 2 Parekh, V. J.; Pandit, A. B., Solid State Fermentation (SSF) for the Production of Sophorolipids from Starmerella bombicola NRRL Y-17069 using glucose, wheat bran and oleic acid. Current Trends in Biotechnology and Pharmacy 2012, 6 (4), 418-424.
  5. 1 2 3 4 Van Bogaert, I. N. A.; Zhang, J.; Soetaert, W., Microbial synthesis of sophorolipids. Process Biochemistry 2011, 46 (4), 821-833
  6. Chen, J.; Song, X.; Zhang, H.; Qu, Y. B.; Miao, J. Y., Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Applied Microbiology and Biotechnology 2006, 72 (1), 52-59.
  7. Kurtzman, C. P.; Price, N. P.; Ray, K. J.; Kuo, T. M., Production of sophorolipid biosurfactants by multiple strains of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 2010, 311 (2), 140-146.
  8. Parekh, V. J.; Pandit, A. B., Optimization of fermentative production of sophorolipid biosurfactant by starmerella bombicola NRRL Y-17069 using response surface methodology. International Journal of Pharmacy and Biological Sciences 2011, 1 (3), 103-116
  9. B.Dolman, C.Kaisermann et al. Integrated sophorolipid production and gravity separation, Process Biochemistry 2017, 54, 162-171.
  10. Deleu, M.; Paquot, M., From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie 2004, 7 (6–7), 641-646
  11. Mohan, P. K.; Nakhla, G.; Yanful, E. K., Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Research 2006, 40 (3), 533-540
  12. Kurtzman CP, Price NP, Ray KJ, Kuo TM (October 2010). "Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade". FEMS Microbiol. Lett. 311 (2): 140–6. doi: 10.1111/j.1574-6968.2010.02082.x . PMID   20738402.
  13. Parekh, V. J.; Pandit, A. B. (2011). "Optimization of fermentative production of sophorolipid biosurfactant by starmerella bombicola NRRL Y-17069 using response surface methodology". International Journal of Pharmacy and Biological Sciences. 1 (3): 103–116.
  14. Ito S, Honda H, Tomita F, Suzuki T (December 1971). "Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions)". J. Antibiot. 24 (12): 855–9. doi: 10.7164/antibiotics.24.855 . PMID   4334639.
  15. Cooper, D. G.; Paddock, D. A., Production of a Biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 1984, 47 (1), 173-176.
  16. Van Bogaert I (2008) Microbial synthesis of sophorolipids by the yeast Candida bombicola. PhD-thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 239 p
  17. Parekh, V. J.; Pandit, A. B., Optimization of fermentative production of sophorolipid biosurfactant by starmerella bombicola NRRL Y-17069 using response surface methodology. International Journal of Pharmacy and Biological Sciences 2011, 1 (3), 103-116.
  18. Rispoli, F. J.; Badia, D.; Shah, V., Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Biotechnology Progress 2010, 26 (4), 938-944.
  19. Ashby, R.; Nuñez, A.; Solaiman, D. Y.; Foglia, T., Sophorolipid biosynthesis from a biodiesel co-product stream. Journal of the American Oil Chemists' Society 2005, 82 (9), 625-630.
  20. Fleurackers, S. J. J., On the use of waste frying oil in the synthesis of sophorolipids. European Journal of Lipid Science and Technology 2006, 108 (1), 5-12.
  21. Wadekar, S.; Kale, S.; Lali, A.; Bhowmick, D.; Pratap, A., Sophorolipid production by starmerella bombicola (ATCC 22214) from virgin and waste frying oils, and the effects of activated earth treatment of the waste oils. JAOCS, Journal of the American Oil Chemists' Society 2012, 89 (6), 1029-1039.
  22. Shah, V.; Jurjevic, M.; Badia, D., Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 2007, 23 (2), 512-515.
  23. Ashby, R. D.; Solaiman, D. K.; Foglia, T. A., The use of fatty acid esters to enhance free acid sophorolipid synthesis. Biotechnol Lett 2006, 28 (4), 253-260.
  24. Parekh, V. J.; Patravale, V. B.; Pandit, A. B., Mango kernel fat: A novel lipid source for the fermentative production of sophorolipid biosurfactant using Starmerella Bombicola NRRL-Y 17069. Annals of Biological Research 2012, 3 (4), 1798-1803.
  25. "DSM enters into agreement with SyntheZyme LLC for Production of Surfactants".
  26. Peng, Yifeng; Munoz-Pinto, Dany J.; Chen, Mingtao; Decatur, John; Hahn, Mariah; Gross, Richard A. (10 November 2014). "Poly(sophorolipid) Structural Variation: Effects on Biomaterial Physical and Biological Properties". Biomacromolecules. 15 (11): 4214–4227. doi:10.1021/bm501255j.