Sound Material-Cycle Society

Last updated

Sound Material-Cycle Society is the term used in Japan to represent a similar concept of circular economy, especially since 2000 when Japan enforced Basic Act on Establishing a Sound Material-Cycle Society. [1]

Contents

Outline

In Japan, a similar concept of circular economy discussed mainly in 1990s. According to Hashimoto et al., [2] various concepts were advocated. Some advocators addressed material cycles in an economic society only, some addressed to natural cycles as well , and some paid attention to virtuous cycles of the environment and economy, and cycles of relationships and lives.

In 2000, the Basic Act was established. Since then, disputes over the concept and definition of sound material-cycle society have been fewer.

The Ministry of the Environment, Japan publishes a white paper on the Sound Material-Cycle Society to report recent progresses toward the Sound Material-Cycle Society annually. English version are available for before 2010. [3] The Japanese government has put forward Fundamental Plans since 2003 every five years or so in accordance with Article 15 of the Basic Act. The first plan set numerical targets of three national material flows, including resource productivity. The latest fourth plan was published in 2018 [4] to advance the Japan's policy and actions further. Industry sectors are also attempting their actions toward the Sound Material-Cycle Society. The Japan Business Federation (known as "Keidanren" in Japanese), is the most well-known business federation in Japan, put forward their voluntary action plan for several years. [5]

Article 2 of the Basic Act define "Sound Material-Cycle Society" as a society in which the consumption of natural resources will be conserved and the environmental load will be reduced to the greatest extent possible, by preventing or reducing the generation of wastes, etc. from products, etc. , by promoting proper cyclical use of products, etc. when these products, etc. have become circulative resources, and by ensuring proper disposal of circulative resources not put into cyclical use (i.e., disposal as wastes).

See also

Related Research Articles

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into by-products, products and services which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

<span class="mw-page-title-main">Product stewardship</span> Managing the environmental impact of different products and materials

Product stewardship is an approach to managing the environmental impacts of different products and materials and at different stages in their production, use and disposal. It acknowledges that those involved in producing, selling, using and disposing of products have a shared responsibility to ensure that those products or materials are managed in a way that reduces their impact, throughout their lifecycle, on the environment and on human health and safety. This approach focusses on the product itself, and everyone involved in the lifespan of the product is called upon to take up responsibility to reduce its environmental, health, and safety impacts.

<span class="mw-page-title-main">Zero waste</span> Philosophy that encourages the redesign of resource life cycles so that all products are reused

Zero waste, or waste minimization, is a set of principles focused on waste prevention that encourages redesigning resource life cycles so that all products are repurposed and/or reused. The goal of the movement is to avoid sending trash to landfills, incinerators, oceans, or any other part of the environment. Currently 9% of global plastic is recycled. In a zero waste system, all materials are reused until the optimum level of consumption is reached.

<span class="mw-page-title-main">Waste hierarchy</span> Tool to evaluate processes protecting the environment

Waste hierarchy is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption from most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.

<span class="mw-page-title-main">Reuse</span> Using again

Reuse is the action or practice of using an item, whether for its original purpose or to fulfill a different function. It should be distinguished from recycling, which is the breaking down of used items to make raw materials for the manufacture of new products. Reuse—by taking, but not reprocessing, previously used items—helps save time, money, energy and resources. In broader economic terms, it can make quality products available to people and organizations with limited means, while generating jobs and business activity that contribute to the economy.

<span class="mw-page-title-main">Ministry of Environment (South Korea)</span>

The Ministry of Environment is the South Korea branch of government charged with environmental protection. In addition to enforcing regulations and sponsoring ecological research, the Ministry manages the national parks of South Korea. Its headquarters is in Sejong City.

<span class="mw-page-title-main">Cradle-to-cradle design</span> Biomimetic approach to the design of products

Cradle-to-cradle design is a biomimetic approach to the design of products and systems that models human industry on nature's processes, where materials are viewed as nutrients circulating in healthy, safe metabolisms. The term itself is a play on the popular corporate phrase "cradle to grave", implying that the C2C model is sustainable and considerate of life and future generations—from the birth, or "cradle", of one generation to the next generation, versus from birth to death, or "grave", within the same generation.

Precycling is the practice of reducing waste by attempting to avoid buying items which will generate waste into home or business. The U.S. Environmental Protection Agency (EPA) also cites that precycling is the preferred method of integrated solid waste management because it cuts waste at its source and therefore trash is eliminated before it is created. According to the EPA, precycling is also characterized as a decision-making process on the behalf of the consumer because it involves making informed judgments regarding a product's waste implications. The implications that are taken into consideration by the consumer include: whether a product is reusable, durable, or repairable; made from renewable or non-renewable resources; over-packaged; and whether or not the container is reusable.

<span class="mw-page-title-main">Ecological design</span> Design approach sensitive to environmental impacts

Ecological design or ecodesign is an approach to designing products and services that gives special consideration to the environmental impacts of a product over its entire lifecycle. Sim Van der Ryn and Stuart Cowan define it as "any form of design that minimizes environmentally destructive impacts by integrating itself with living processes." Ecological design can also be defined as the process of integrating environmental considerations into design and development with the aim of reducing environmental impacts of products through their life cycle.

This is a glossary of environmental science.

<span class="mw-page-title-main">Recycling in Japan</span>

Recycling in Japan, an aspect of waste management in Japan, is based on the Japanese Container and Packaging Recycling Law. Plastic, paper, PET bottles, aluminium and glass are collected and recycled. Japan's country profile in Waste Atlas shows that in 2012 Recycling Rate was 20.8%.

Waste management in Japan today emphasizes not just the efficient and sanitary collection of waste, but also reduction in waste produced and recycling of waste when possible. This has been influenced by its history, particularly periods of significant economic expansion, as well as its geography as a mountainous country with limited space for landfills. Important forms of waste disposal include incineration, recycling and, to a smaller extent, landfills and land reclamation. Although Japan has made progress since the 1990s in reducing waste produced and encouraging recycling, there is still further progress to be made in reducing reliance on incinerators and the garbage sent to landfills. Challenges also exist in the processing of electronic waste and debris left after natural disasters.

Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfort of occupants in a building. Sustainable design seeks to reduce negative impacts on the environment, the health and well-being of building occupants, thereby improving building performance. The basic objectives of sustainability are to reduce the consumption of non-renewable resources, minimize waste, and create healthy, productive environments.

The City of Oakland, California, adopted a Zero Waste Strategic Plan in 2006, detailing a road map for the city to follow toward the implementation of a Zero Waste System by 2020. As stated in a City Resolution, introduced by then Mayor Jerry Brown, Zero Waste principles:

<span class="mw-page-title-main">Circular economy</span> Production model to minimise wastage and emissions

A circular economy is a model of resource production and consumption in any economy that involves sharing, leasing, reusing, repairing, refurbishing, and recycling existing materials and products for as long as possible. The concept aims to tackle global challenges such as climate change, biodiversity loss, waste, and pollution by emphasizing the design-based implementation of the three base principles of the model. The three principles required for the transformation to a circular economy are: designing out waste and pollution; keeping products and materials in use, and regenerating natural systems. CE is defined in contradistinction to the traditional linear economy. The idea and concepts of a circular economy have been studied extensively in academia, business, and government over the past ten years. It has been gaining popularity because it can help to minimize carbon emissions and the consumption of raw materials, open up new market prospects, and, principally, increase the sustainability of consumption.

Sustainable products are products who are either sustainability sourced, manufactured or processed that provide environmental, social and economic benefits while protecting public health and environment over their whole life cycle, from the extraction of raw materials until the final disposal.

Life cycle thinking is an approach that emphasizes the assessment and minimization of environmental impacts at all stages of a product's life. This concept seeks to avoid shifting environmental burdens from one stage of the product's life to another. It also recognizes the importance of technological innovation in tackling environmental issues.

Eco-industrial development (EID) is a framework for industry to develop while reducing its impact on the environment. It uses a closed loop production cycle to tackle a broad set of environmental challenges such as soil and water pollution, desertification, species preservation, energy management, by-product synergy, resource efficiency, air quality, etc.

Sustainable Materials Management is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how a society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle new opportunities can be found to reduce environmental impacts, conserve resources, and reduce costs.

A circular economy is an alternative way countries manage their resources, where instead of using products in the traditional linear make, use, dispose method, resources are used for their maximum utility throughout their life cycle and regenerated in a cyclical pattern minimizing waste. They strive to create economic development through environmental and resource protection. The ideas of a circular economy were officially adopted by China in 2002, when the 16th National Congress of the Chinese Communist Party legislated it as a national endeavour, though various sustainability initiatives were implemented in the previous decades starting in 1973. China adopted the circular economy due to the environmental damage and resource depletion that was occurring from going through its industrialization process. China is currently a world leader in the production of resources, where it produces 46% of the world's aluminum, 50% of steel and 60% of cement, while it has consumed more raw materials than all the countries a part of the Organisation for Economic Co-operation and Development (OECD) combined. In 2014, China created 3.2 billion tonnes of industrial solid waste, where 2 billion tonnes were recovered using recycling, incineration, reusing and composting. By 2025, China is anticipated to produce up to one quarter of the world's municipal solid waste.

References

  1. "Japanese Law Translation - Basic Act on Establishing a Sound Material-Cycle Society". www.japaneselawtranslation.go.jp. Retrieved 2021-03-20.
  2. Hashimoto, Seiji; Moriguchi, Yuichi; Tasaki, Tomohiro; Yagishita, Masaharu (2006). "Comparative Analysis on Images of Cycle-Oriented Society". Journal of the Japan Society of Waste Management Experts. 17 (3): 204–218. doi: 10.3985/jswme.17.204 .
  3. Ministry of the Environment, Japan. "Sound Material-Cycle Society".
  4. Japanese Government. "The Fourth Fundamental Plan for Establishing a Sound Material-Cycle Society" (PDF).
  5. Japan Business Federation (2020). "Voluntary Action Plan for Establishing a Sound Material-Cycle Society".{{cite web}}: |last= has generic name (help)