Spatial bifurcation

Last updated

Spatial bifurcation is a form of bifurcation theory. The classic bifurcation analysis is referred to as an ordinary differential equation system, which is independent on the spatial variables. However, most realistic systems are spatially dependent. In order to understand spatial variable system (partial differential equations), some scientists try to treat with the spatial variable as time and use the AUTO package [1] get a bifurcation results. [2] [3]

The weak nonlinear analysis will not provide substantial insights into the nonlinear problem of pattern selection. To understand the pattern selection mechanism, the method of spatial dynamics is used, [4] which was found to be an effective method exploring the multiplicity of steady state solutions. [3] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Chaos theory</span> Field of mathematics

Chaos theory is an interdisciplinary area of scientific study and branch of mathematics focused on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions, and were once thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnection, constant feedback loops, repetition, self-similarity, fractals, and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state. A metaphor for this behavior is that a butterfly flapping its wings in Brazil can cause a tornado in Texas.

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

<span class="mw-page-title-main">Lyapunov exponent</span> The rate of separation of infinitesimally close trajectories

In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge at a rate given by

<span class="mw-page-title-main">Mathematical and theoretical biology</span> Branch of biology

Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of the living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to prove and validate the scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

<span class="mw-page-title-main">Bifurcation theory</span> Study of sudden qualitative behavior changes caused by small parameter changes

Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations occur in both continuous systems and discrete systems.

<span class="mw-page-title-main">Lorenz system</span> System of ordinary differential equations with chaotic solutions

The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. In popular media the "butterfly effect" stems from the real-world implications of the Lorenz attractor, namely that in a chaotic physical system, in the absence of perfect knowledge of the initial conditions, our ability to predict its future course will always fail. This underscores that physical systems can be completely deterministic and yet still be inherently unpredictable. The shape of the Lorenz attractor itself, when plotted in phase space, may also be seen to resemble a butterfly.

<span class="mw-page-title-main">Reaction–diffusion system</span> Type of mathematical model

Reaction–diffusion systems are mathematical models which correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out over a surface in space.

Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self-organization. They can be considered as an extension of the classical soliton concept in conservative systems. An alternative terminology includes autosolitons, spots and pulses.

A phase-field model is a mathematical model for solving interfacial problems. It has mainly been applied to solidification dynamics, but it has also been applied to other situations such as viscous fingering, fracture mechanics, hydrogen embrittlement, and vesicle dynamics.

<span class="mw-page-title-main">Camassa–Holm equation</span>

In fluid dynamics, the Camassa–Holm equation is the integrable, dimensionless and non-linear partial differential equation

A coupled map lattice (CML) is a dynamical system that models the behavior of non-linear systems. They are predominantly used to qualitatively study the chaotic dynamics of spatially extended systems. This includes the dynamics of spatiotemporal chaos where the number of effective degrees of freedom diverges as the size of the system increases.

<span class="mw-page-title-main">Homotopy analysis method</span>

The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-Maclaurin series to deal with the nonlinearities in the system.

<span class="mw-page-title-main">Stellar pulsation</span>

Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.

In mathematics, inertial manifolds are concerned with the long term behavior of the solutions of dissipative dynamical systems. Inertial manifolds are finite-dimensional, smooth, invariant manifolds that contain the global attractor and attract all solutions exponentially quickly. Since an inertial manifold is finite-dimensional even if the original system is infinite-dimensional, and because most of the dynamics for the system takes place on the inertial manifold, studying the dynamics on an inertial manifold produces a considerable simplification in the study of the dynamics of the original system.

<span class="mw-page-title-main">Periodic travelling wave</span>

In mathematics, a periodic travelling wave is a periodic function of one-dimensional space that moves with constant speed. Consequently, it is a special type of spatiotemporal oscillation that is a periodic function of both space and time.

Equation-free modeling is a method for multiscale computation and computer-aided analysis. It is designed for a class of complicated systems in which one observes evolution at a macroscopic, coarse scale of interest, while accurate models are only given at a finely detailed, microscopic, level of description. The framework empowers one to perform macroscopic computational tasks using only appropriately initialized microscopic simulation on short time and small length scales. The methodology eliminates the derivation of explicit macroscopic evolution equations when these equations conceptually exist but are not available in closed form; hence the term equation-free.

Dwight Barkley is a professor of mathematics at the University of Warwick.

Gérard Iooss is a French mathematician, specializing in dynamical systems and mathematical problems of hydrodynamics.

References

  1. "AUTO". indy.cs.concordia.ca.
  2. Wang, R.H., Liu, Q.X., Sun, G.Q., Jin, Z., and Van de Koppel, J. (2010). "Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds". Journal of the Royal Society Interface. 6 (37): 705–18. doi:10.1098/rsif.2008.0439. PMC   2839941 . PMID   18986965.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 1 2 A Yochelis; et al. (2008). "The formation of labyrinths, spots and stripe patterns in a biochemical approach to cardiovascular calcification". New J. Phys. 10 055002 (5): 055002. arXiv: 0712.3780 . Bibcode:2008NJPh...10e5002Y. doi:10.1088/1367-2630/10/5/055002. S2CID   122889339.
  4. Champneys A R (1998). "Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics". Physica D. 112 (1–2): 158–86. Bibcode:1998PhyD..112..158C. CiteSeerX   10.1.1.30.3556 . doi:10.1016/S0167-2789(97)00209-1.
  5. Edgar Knobloch (2008). "Spatially localized structures in dissipative systems: open problems". Nonlinearity. 21 (4): T45–60. doi:10.1088/0951-7715/21/4/T02. S2CID   43827510.