Specific fan power

Last updated

Specific Fan Power (SFP) is a parameter that quantifies the energy-efficiency of fan air movement systems. It is a measure of the electric power that is needed to drive a fan (or collection of fans), relative to the amount of air that is circulated through the fan(s). It is not constant for a given fan, but changes with both air flow rate and fan pressure rise.

Contents

Definition

SFP for a given fan system and operating point (combination of flow rate and pressure rise) is defined as:

where:

There are various sub-definitions of SFP for different specific applications, including SFPe (building energy performance calculations), SFPv (for performance verification tests), SFPi (individual fan), SFPAHU (air handling unit), SFPFCU (fan coil unit), and SFPBLDG (whole building). These are explained in [1] and in part in. [2] Reference 1 also describes how account for intermittently operated fans, e.g. kitchen hoods, and part-load performance in variable air volume (VAV) systems.

SFP can be expressed in the following equivalent SI units:

SFP and fan system efficiency

As you can see above, SFP can be expressed in units of pressure, since pressure is a measure of energy per m³ air. The relationship between SFP, fan pressure rise, and fan system efficiency is simply:

where:

In physics, the term total pressure may indicate two different quantities, both having the dimensions of a pressure:

In the case of an ideal lossless fan system (i.e. ) the SFP is exactly equal to the fan pressure rise (i.e. total pressure loss in the ventilation system). In reality the fan system efficiency is often in the range 0 to 60% (i.e. ); it is lowest for small fans or inefficient operating points (e.g. throttled flow or free-flow). The efficiency is a function of the total losses in the fan system, including aerodynamic losses in the fan, friction losses in the drive (e.g. belt), losses in the electric motor, and variable speed drive power electronics. For more insight into how to maximise energy efficiency and minimize noise in fan systems, see ref.1

See also

Specific Pump Power (SPP) is a metric in fluid dynamics that quantifies the energy-efficiency of pump systems. It is a measure of the electric power that is needed to operate a pump, relative to the volume flow rate. It is not constant for a given pump, but changes with both flow rate and pump pressure. This term 'SPP' is adapted from the established metric Specific fan power (SFP) for fans (blowers). It is commonly used when measuring the energy efficiency of buildings.

Efficient energy use

Efficient energy use, sometimes simply called energy efficiency, is the goal to reduce the amount of energy required to provide products and services. For example, insulating a home allows a building to use less heating and cooling energy to achieve and maintain a comfortable temperature. Installing LED lighting, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

References and notes

  1. P.G. Schild & M. Mysen: Recommendations on Specific Fan Power and Fan System Efficiency, Technical Note TN65, IEA Air Infiltration & Ventilation Centre, 2009 http://www.aivc.org/sites/default/files/members_area/medias/pdf/Technotes/TN65_Specific%20Fan%20Power.pdf
  2. EN 13779. Ventilation for non-residential buildings - Performance requirements for ventilation and room-conditioning systems. Appendix D – Assessing the power efficiency of fans and air handling units – Calculating and checking the SPFV

Bibliography and further reading

Related Research Articles

Carnot heat engine heat engine

A Carnot heat engine is a theoretical engine that operates on the reversible Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded upon by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857 from which the concept of entropy emerged.

Diesel cycle

The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to igniting the fuel-air mixture with a spark plug as in the Otto cycle (four-stroke/petrol) engine. Diesel engines are used in aircraft, automobiles, power generation, diesel-electric locomotives, and both surface ships and submarines.

Hydropower energy derived from falling or running water

Hydropower or water power is power derived from the energy of falling water or fast running water, which may be harnessed for useful purposes. Since ancient times, hydropower from many kinds of watermills has been used as a renewable energy source for irrigation and the operation of various mechanical devices, such as gristmills, sawmills, textile mills, trip hammers, dock cranes, domestic lifts, and ore mills. A trompe, which produces compressed air from falling water, is sometimes used to power other machinery at a distance.

Jet engine reaction engine which generates thrust by jet propulsion

A jet engine is a type of reaction engine discharging a fast-moving jet that generates thrust by jet propulsion. This broad definition includes airbreathing jet engines. In general, jet engines are combustion engines.

Pelton wheel

A Pelton wheel is an impulse-type water turbine invented by Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel. Many earlier variations of impulse turbines existed, but they were less efficient than Pelton's design. Water leaving those wheels typically still had high speed, carrying away much of the dynamic energy brought to the wheels. Pelton's paddle geometry was designed so that when the rim ran at half the speed of the water jet, the water left the wheel with very little speed; thus his design extracted almost all of the water's impulse energy—which allowed for a very efficient turbine.

Steam turbine type of turbine device which uses steam from a boiler to rotate the turbine blades

A steam turbine is a device that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Sir Charles Parsons in 1884.

Otto cycle otto cycle

An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines.

Carnots theorem (thermodynamics)

Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also called Carnot's rule, is a principle that specifies limits on the maximum efficiency any heat engine can obtain. The efficiency of a Carnot engine depends solely on the difference between the hot and cold temperature reservoirs.

Isentropic process

In thermodynamics, an isentropic process is an idealized thermodynamic process that is both adiabatic and reversible. The work transfers of the system are frictionless, and there is no transfer of heat or matter. Such an idealized process is useful in engineering as a model of and basis of comparison for real processes.

Compressor Mechanical device that increases the pressure of a gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

Rankine cycle Model that is used to predict the performance of steam turbine systems

The Rankine cycle is a model used to predict the performance of steam turbine systems. It was also used to study the performance of reciprocating steam engines. The Rankine cycle is an idealized thermodynamic cycle of a heat engine that converts heat into mechanical work while undergoing phase change. It is an idealized cycle in which friction losses in each of the four components are neglected. The heat is supplied externally to a closed loop, which usually uses water as the working fluid. It is named after William John Macquorn Rankine, a Scottish polymath and Glasgow University professor.

Centrifugal pump

Centrifugal pumps are a sub-class of dynamic axisymmetric work-absorbing turbomachinery. Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from where it exits.

Thermal efficiency performance measure of a device that uses thermal energy

In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, a steam turbine or a steam engine, a boiler, furnace, or a refrigerator for example. For a heat engine, thermal efficiency is the fraction of the energy added by heat that is converted to net work output. In the case of a refrigeration or heat pump cycle, thermal efficiency is the ratio of net heat output for heating, or removal for cooling, to energy input.

Atkinson resistance is commonly used in mine ventilation to characterise the resistance to airflow of a duct of irregular size and shape, such as a mine roadway. It has the symbol and is used in the square law for pressure drop,

In aircraft and rocket design, overall propulsive efficiency is the efficiency with which the energy contained in a vehicle's propellant is converted into kinetic energy of the vehicle, to accelerate it, or to replace losses due to aerodynamic drag or gravity. It can also be described as the proportion of the mechanical energy actually used to propel the aircraft. It is always less than one, because conservation of momentum requires that the exhaust have some of the kinetic energy, and the propulsive mechanism is never perfectly efficient. Overall propulsive efficiency is greatly dependent on air density and airspeed.

Natural ventilation process of supplying air to and removing air from an indoor space without using mechanical systems

Natural ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces. There are two types of natural ventilation occurring in buildings: wind driven ventilation and buoyancy-driven ventilation. Wind driven ventilation arises from the different pressures created by wind around a building or structure, and openings being formed on the perimeter which then permit flow through the building. Buoyancy-driven ventilation occurs as a result of the directional buoyancy force that results from temperature differences between the interior and exterior. Since the internal heat gains which create temperature differences between the interior and exterior are created by natural processes, including the heat from people, and wind effects are variable, naturally ventilated buildings are sometimes called "breathing buildings".

Hydraulic pump

Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. It generates flow with enough power to overcome pressure induced by the load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

Radiation stress The depth-integrated excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually fare more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are: