Speed to fly

Last updated
MacCready speed to fly ring for a variometer. The outer ring show various airspeeds, while the variometer shows climb rate. The index arrow, white triangle, on the ring is placed against the expected rate of climb at the next thermal. The variometer needle will then point to the optimum airspeed, listed on the ring, to be flown to that thermal. The greater the expected rate of climb, the more clockwise the ring is rotated, and the faster is the optimum airspeed. MacCready Ring and variometer.jpg
MacCready speed to fly ring for a variometer. The outer ring show various airspeeds, while the variometer shows climb rate. The index arrow, white triangle, on the ring is placed against the expected rate of climb at the next thermal. The variometer needle will then point to the optimum airspeed, listed on the ring, to be flown to that thermal. The greater the expected rate of climb, the more clockwise the ring is rotated, and the faster is the optimum airspeed.

Speed to fly is a principle used by soaring pilots when flying between sources of lift, usually thermals, ridge lift and wave. The aim is to maximize the average cross-country speed by optimizing the airspeed in both rising and sinking air. The optimal airspeed is independent of the wind speed, because the fastest average speed achievable through the airmass corresponds to the fastest achievable average groundspeed. [2]

Contents

The speed to fly is the optimum speed through sinking or rising air mass to achieve either the furthest glide, or fastest average cross-country speed. [1]

Most speed to fly setups use units of either airspeed in kilometers per hour (km/h) and climb rate in meters per second (m/s), or airspeed in knots (kn) and climb rate in feet per minute (ft/min).

History

The idea is usually attributed to Paul MacCready, although an early version of the theory was first described by Wolfgang Späte in 1938. [3] However Späte may not have considered sinking air between thermals, and there is no mention of this until 1947 when Ernest Dewing and George Pirie independently included this aspect. [4]

In 1954, Paul MacCready described an Optimum Airspeed Selector, that he had been using since 1947. According to MacCready, the crosscountry airspeed selector is "a simple device that indicates the optimum speed at which a sailplane should be flown between thermals. On a day with weak thermals and weak downcurrents, a pilot should fly between thermals at a velocity near that for best gliding angle of the sailplane...If the next thermal to be encountered is expected to be strong, the pilot should dive toward it at high velocity in order to reach it as fast as possible. Note the magnitude of the wind is of no concern when considering thermals which move with the air mass. For the derivation of the airspeed selector one minimizes the time for the sailplane to reach a thermal and regain the original height." [5]

According to Bob Wander, "The principal advantage of making a rotatable speed-to-fly ring for your total energy variometer is that cross-country speeds in gliding can be optimized when we factor the strength of thermals into the speed-to-fly process. For instance, when thermals are weak, then it pays to fly conservatively...minimum sinking speed...We are able to cruise faster between thermals when lift is strong because it is so easy to get altitude back in strong lift". [6]

Instrumentation

The minimal instrumentation required is an airspeed indicator and a variometer. The pilot will use the polar curve information for the particular glider to derive the exact speeds to fly, minimum sink or maximum L/D, depending on the lift and sink conditions in which the glider is flying. A speed to fly ring (known as a 'MacCready Ring'), which is fitted around the aircraft's variometer, will indicate the optimum airspeed to fly between thermals for maximum crosscountry performance. The ring is usually calibrated in either knots or meters per second and its markings are based on the aircraft's polar curve. [7] During the glide between thermals, the index arrow is set at the rate of climb expected in the next thermal. On the speed ring, the variometer needle points to the optimum speed to fly between thermals. [8]

Electronic versions of the MacCready Ring are built into glide computers that will give audible warnings to the pilot to speed up or slow down. Similar facilities can also be built into a PDA. The computer is connected to sensors that detect the aircraft's airspeed and rate of sink. If linked to a GPS, and using a computed or manual estimate of the windspeed, the glide computer can also calculate the speed and altitude necessary to glide to a particular destination. This glide is known as the final glide because no further lift should be necessary to reach the goal. During this glide, speed to fly information is needed to ensure that the remaining height is used efficiently.

See also

Related Research Articles

<span class="mw-page-title-main">Hang gliding</span> Unpowered glider air sport

Hang gliding is an air sport or recreational activity in which a pilot flies a light, non-motorised, heavier-than-air aircraft called a hang glider. Most modern hang gliders are made of an aluminium alloy or composite frame covered with synthetic sailcloth to form a wing. Typically the pilot is in a harness suspended from the airframe, and controls the aircraft by shifting body weight in opposition to a control frame.

<span class="mw-page-title-main">Paragliding</span> Soaring with a paraglider

Paragliding is the recreational and competitive adventure sport of flying paragliders: lightweight, free-flying, foot-launched glider aircraft with no rigid primary structure. The pilot sits in a harness or in a cocoon-like 'pod' suspended below a fabric wing. Wing shape is maintained by the suspension lines, the pressure of air entering vents in the front of the wing, and the aerodynamic forces of the air flowing over the outside.

<span class="mw-page-title-main">Variometer</span> Flight instrument which determines the aircrafts vertical velocity (rate of descent/climb)

In aviation, a variometer – also known as a rate of climb and descent indicator (RCDI), rate-of-climb indicator, vertical speed indicator (VSI), or vertical velocity indicator (VVI) – is one of the flight instruments in an aircraft used to inform the pilot of the rate of descent or climb. It can be calibrated in metres per second, feet per minute or knots, depending on country and type of aircraft. It is typically connected to the aircraft's external static pressure source.

<span class="mw-page-title-main">Lift-to-drag ratio</span> Measure of aerodynamic efficiency

In aerodynamics, the lift-to-drag ratio is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

Dynamic soaring is a flying technique used to gain energy by repeatedly crossing the boundary between air masses of different velocity. Such zones of wind gradient are generally found close to obstacles and close to the surface, so the technique is mainly of use to birds and operators of radio-controlled gliders, but glider pilots are sometimes able to soar dynamically in meteorological wind shears at higher altitudes.

<span class="mw-page-title-main">Gliding competition</span>

Some of the pilots in the sport of gliding take part in gliding competitions. These are usually racing competitions, but there are also aerobatic contests and on-line league tables.

<span class="mw-page-title-main">Yaw string</span> Device for indicating a slip or skid in an aircraft in flight

The yaw string, also known as a slip string, is a simple device for indicating a slip or skid in an aircraft in flight. It performs the same function as the slip-skid indicator ball, but is more sensitive, and does not require the pilot to look down at the instrument panel. Technically, it measures sideslip angle, not yaw angle, but this indicates how the aircraft must be yawed to return the sideslip angle to zero.

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

<span class="mw-page-title-main">Glider (aircraft)</span> Aircraft designed for operation without an engine

A glider is a fixed-wing aircraft that is supported in flight by the dynamic reaction of the air against its lifting surfaces, and whose free flight does not depend on an engine. Most gliders do not have an engine, although motor-gliders have small engines for extending their flight when necessary by sustaining the altitude with some being powerful enough to take off by self-launch.

<span class="mw-page-title-main">Schweizer SGS 1-23</span> Type of aircraft

The Schweizer SGS 1-23 is a United States Open and Standard Class, single-seat, mid-wing glider built by Schweizer Aircraft of Elmira, New York.

<span class="mw-page-title-main">Schweizer SGS 2-25</span> Type of aircraft

The Schweizer SGS 2-25 is a United States two-seat, mid-wing, two-place competition glider built by Schweizer Aircraft of Elmira, New York.

<span class="mw-page-title-main">Schweizer SGS 1-36 Sprite</span> Type of aircraft

The Schweizer SGS 1-36 Sprite is a United States, single-seat, mid-wing glider built by Schweizer Aircraft of Elmira, New York.

Lift is a meteorological phenomenon used as an energy source by soaring aircraft and soaring birds. The most common human application of lift is in sport and recreation. The three air sports that use soaring flight are: gliding, hang gliding and paragliding.

<span class="mw-page-title-main">Gliding</span> Recreational activity and competitive air sport

Gliding is a recreational activity and competitive air sport in which pilots fly unpowered aircraft known as gliders or sailplanes using naturally occurring currents of rising air in the atmosphere to remain airborne. The word soaring is also used for the sport.

<span class="mw-page-title-main">Glider (sailplane)</span> Type of aircraft used in the sport of gliding

A glider or sailplane is a type of glider aircraft used in the leisure activity and sport of gliding. This unpowered aircraft can use naturally occurring currents of rising air in the atmosphere to gain altitude. Sailplanes are aerodynamically streamlined and so can fly a significant distance forward for a small decrease in altitude.

The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph. Drag may be expressed as actual drag or the coefficient of drag.

The Schneider Grunau 7 Moazagotl was a high-performance sailplane designed in Germany in 1933 specifically for fast, long distance flying using strong thermals. In 1937 it came second in the first World Gliding Championships, having previously made a flight of 300 km (186 mi).

Numerous accidents have occurred in the vicinity of thunderstorms due to the density of clouds. It is often said that the turbulence can be extreme enough inside a cumulonimbus to tear an aircraft into pieces, and even strong enough to hold a skydiver. However, this kind of accident is relatively rare. Moreover, the turbulence under a thunderstorm can be non-existent and is usually no more than moderate. Most thunderstorm-related crashes occur due to a stall close to the ground when the pilot gets caught by surprise by a thunderstorm-induced wind shift. Moreover, aircraft damage caused by thunderstorms is rarely in the form of structural failure due to turbulence but is typically less severe and the consequence of secondary effects of thunderstorms.

This is a glossary of acronyms, initialisms and terms used for gliding and soaring. This is a specialized subset of broader aviation, aerospace, and aeronautical terminology. Additional definitions can be found in the FAA Glider Flying Handbook.

Geoffrey Leonard Huson Stephenson was a radar engineer who developed weapon-locating radar and was the first person the cross the English Channel unaided in a glider.

References

  1. 1 2 Glider Flying Handbook, FAA-H-8083-13. U.S. Department of Transportation, FAA. 2003. pp. 4–8, G-4. ISBN   9780160514197.
  2. Modern Elementary Gliding, British Gliding Association, n.d. Appendix D: "Making the Most of it".
  3. Pettersson, Åke (October–November 2006). "Letters". Sailplane & Gliding. British Gliding Association. 57 (5): 6.
  4. Edwards, Anthony (December 2006 – January 2007). "Letters". Sailplane & Gliding. British Gliding Association. 57 (6): 7.
  5. MacCready, Paul (1954). "Optimum Airspeed Selector". Soaring. Soaring Society of America. 18 (2): 8–9.
  6. Wander, Bob (2003). Glider Polars and Speed-To-Fly...Made Easy!. Minneapolis: Bob Wander's Soaring Books & Supplies. p. 23.
  7. 1 meter per second = approximately 2 knots (more precisely 1.944 knots).
  8. Glider Flying Handbook. U.S. Government Printing Office, Washington D.C.: U.S. Federal Aviation Administration. 2003. pp. 4–8. FAA-8083-15.