Spurious wakeup

Last updated

In computing, a spurious wakeup occurs when a thread wakes up from waiting on a condition variable and finds that the condition is still unsatisfied. It is referred to as spurious because the thread has seemingly been awakened for no reason. Spurious wakeups usually happen because in between the time when the condition variable was signaled and when the awakened thread was finally able to run, another thread ran first and changed the condition again. In general, if multiple threads are awakened, the first one to run will find the condition satisfied, but the others may find the condition unsatisfied. In this way, there is a race condition between all the awakened threads. The first thread to run will win the race and find the condition satisfied, while the other threads will lose the race, and experience a spurious wakeup.[ citation needed ]

The problem of spurious wakeup can be exacerbated on multiprocessor systems. When several threads are waiting on a single condition variable, the system may decide to wake all threads up when it's signaled. The system treats every signal( ) to wake one thread as a broadcast( ) to wake all of them, thus breaking any possibly expected 1:1 relationship between signals and wakeup. [1] If ten threads are waiting, only one will win and the other nine will experience spurious wakeup.[ citation needed ]

To allow for implementation flexibility in dealing with error conditions and races inside the operating system, condition variables may also be allowed to return from a wait even if not signaled, though it is not clear how many implementations do that. In the Solaris implementation of condition variables, a spurious wakeup may occur without the condition being assigned if the process is signaled; the wait system call aborts and returns EINTR. [2] The Linux p-thread implementation of condition variables guarantees that it will not do that. [3] [4]

Because spurious wakeup can happen, when a thread wakes after waiting on a condition variable, it should always check that the condition it sought is still satisfied. If it is not, it should go back to sleeping on the condition variable, waiting for another opportunity. [5]

Related Research Articles

In computing, a context switch is the process of storing the state of a process or thread, so that it can be restored and resume execution at a later point, and then restoring a different, previously saved, state. This allows multiple processes to share a single central processing unit (CPU), and is an essential feature of a multiprogramming or multitasking operating system. In a traditional CPU, each process - a program in execution - utilizes the various CPU registers to store data and hold the current state of the running process. However, in a multitasking operating system, the operating system switches between processes or threads to allow the execution of multiple processes simultaneously. For every switch, the operating system must save the state of the currently running process, followed by loading the next process state, which will run on the CPU. This sequence of operations that stores the state of the running process and loads the following running process is called a context switch.

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

In multi-threaded computer programming, a function is thread-safe when it can be invoked or accessed concurrently by multiple threads without causing unexpected behavior, race conditions, or data corruption. As in the multi-threaded context where a program executes several threads simultaneously in a shared address space and each of those threads has access to every other thread's memory, thread-safe functions need to ensure that all those threads behave properly and fulfill their design specifications without unintended interaction.

In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed depending on programmer-defined conditions.

Processor affinity, or CPU pinning or "cache affinity", enables the binding and unbinding of a process or a thread to a central processing unit (CPU) or a range of CPUs, so that the process or thread will execute only on the designated CPU or CPUs rather than any CPU. This can be viewed as a modification of the native central queue scheduling algorithm in a symmetric multiprocessing operating system. Each item in the queue has a tag indicating its kin processor. At the time of resource allocation, each task is allocated to its kin processor in preference to others.

In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows.

<span class="mw-page-title-main">OpenMP</span> Open standard for parallelizing

OpenMP is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.

In computer science, the test-and-set instruction is an instruction used to write (set) 1 to a memory location and return its old value as a single atomic operation. The caller can then "test" the result to see if the state was changed by the call. If multiple processes may access the same memory location, and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process's test-and-set is finished. A central processing unit (CPU) may use a test-and-set instruction offered by another electronic component, such as dual-port RAM; a CPU itself may also offer a test-and-set instruction.

<span class="mw-page-title-main">Race condition</span> When a systems behavior depends on timing of uncontrollable events

A race condition or race hazard is the condition of an electronics, software, or other system where the system's substantive behavior is dependent on the sequence or timing of other uncontrollable events, leading to unexpected or inconsistent results. It becomes a bug when one or more of the possible behaviors is undesirable.

In computing, POSIX Threads, commonly known as pthreads, is an execution model that exists independently from a programming language, as well as a parallel execution model. It allows a program to control multiple different flows of work that overlap in time. Each flow of work is referred to as a thread, and creation and control over these flows is achieved by making calls to the POSIX Threads API. POSIX Threads is an API defined by the Institute of Electrical and Electronics Engineers (IEEE) standard POSIX.1c, Threads extensions .

In computer science and software engineering, busy-waiting, busy-looping or spinning is a technique in which a process repeatedly checks to see if a condition is true, such as whether keyboard input or a lock is available. Spinning can also be used to generate an arbitrary time delay, a technique that was necessary on systems that lacked a method of waiting a specific length of time. Processor speeds vary greatly from computer to computer, especially as some processors are designed to dynamically adjust speed based on current workload. Consequently, spinning as a time-delay technique can produce inconsistent or even unpredictable results on different systems unless code is included to determine the time a processor takes to execute a "do nothing" loop, or the looping code explicitly checks a real-time clock.

In computing, a futex is a kernel system call that programmers can use to implement basic locking, or as a building block for higher-level locking abstractions such as semaphores and POSIX mutexes or condition variables.

In concurrent programming, a monitor is a synchronization construct that prevents threads from concurrently accessing a shared object's state and allows them to wait for the state to change. They provide a mechanism for threads to temporarily give up exclusive access in order to wait for some condition to be met, before regaining exclusive access and resuming their task. A monitor consists of a mutex (lock) and at least one condition variable. A condition variable is explicitly 'signalled' when the object's state is modified, temporarily passing the mutex to another thread 'waiting' on the conditional variable.

In computer programming, thread-local storage (TLS) is a memory management method that uses static or global memory local to a thread. The concept allows storage of data that appears to be global in a system with separate threads.

In computer science, a readers–writer is a synchronization primitive that solves one of the readers–writers problems. An RW lock allows concurrent access for read-only operations, whereas write operations require exclusive access. This means that multiple threads can read the data in parallel but an exclusive lock is needed for writing or modifying data. When a writer is writing the data, all other writers and readers will be blocked until the writer is finished writing. A common use might be to control access to a data structure in memory that cannot be updated atomically and is invalid until the update is complete.

In computer science, synchronization is the task of coordinating multiple processes to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action.

In parallel computing, a barrier is a type of synchronization method. A barrier for a group of threads or processes in the source code means any thread/process must stop at this point and cannot proceed until all other threads/processes reach this barrier.

A computer program may sleep, which places it into an inactive state for a period of time. Eventually the expiration of an interval timer, or the receipt of a signal or interrupt causes the program to resume execution.

A journaling file system is a file system that keeps track of changes not yet committed to the file system's main part by recording the goal of such changes in a data structure known as a "journal", which is usually a circular log. In the event of a system crash or power failure, such file systems can be brought back online more quickly with a lower likelihood of becoming corrupted.

References

  1. Raymond Chen (February 1, 2018). "Spurious wake-ups in Win32 condition variables" . Retrieved May 9, 2020.
  2. "Interrupted Waits on Condition Variables (Solaris Threads Only)". Oracle Corporation . Retrieved May 9, 2020.
  3. "pthread_cond_wait(3) - Linux man page". die.net. Retrieved May 9, 2020. These functions shall not return an error code of [EINTR].
  4. "pthread_cond_timedwait, pthread_cond_wait - wait on a condition". The Open Group. 2018. Retrieved May 9, 2020.
  5. Arpaci-Dusseau, Remzi; Arpaci-Dusseau, Andrea (November 2023). "Condition Variables" (PDF). Operating Systems: Three Easy Pieces.