Stabilized images

Last updated

In vision science, stabilized Images are images that remain immobile on the retina. Under natural viewing conditions, the eyes are always in motion. Small eye movements continually occur even when attempting fixation (the maintenance of steady gaze on a single point). Experiments in the early 1950s established that stabilized images result in the fading and disappearance of the visual percept, possibly due to retinal adaptation to a stationary field. [1] In 2007, studies indicated that stabilizing vision between saccades selectively impairs vision of fine spatial detail. [2] [3] [4]

Images can be stabilized mechanically with optics mounted on the eye itself, or the image can be continually updated on a display to counteract the effects of eye movements. [5] Because no existing method creates perfect image stabilization, this leaves open the question of whether all perfectly stabilized images disappear completely. [6]

Related Research Articles

<span class="mw-page-title-main">Ewald Hering</span> German physiologist

Karl Ewald Konstantin Hering was a German physiologist who did much research in color vision, binocular perception, eye movements, and hyperacuity. He proposed opponent color theory in 1892.

<span class="mw-page-title-main">Saccade</span> Eye movement

A saccade is a quick, simultaneous movement of both eyes between two or more phases of fixation in the same direction. In contrast, in smooth-pursuit movements, the eyes move smoothly instead of in jumps. The phenomenon can be associated with a shift in frequency of an emitted signal or a movement of a body part or device. Controlled cortically by the frontal eye fields (FEF), or subcortically by the superior colliculus, saccades serve as a mechanism for fixation, rapid eye movement, and the fast phase of optokinetic nystagmus. The word appears to have been coined in the 1880s by French ophthalmologist Émile Javal, who used a mirror on one side of a page to observe eye movement in silent reading, and found that it involves a succession of discontinuous individual movements.

<span class="mw-page-title-main">Binocular vision</span> Type of vision with two eyes facing the same direction

In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.

<span class="mw-page-title-main">Adaptive optics</span> Technique used in optical systems

Adaptive optics (AO) is a technique of precisely deforming a mirror in order to compensate for light distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array.

<span class="mw-page-title-main">Depth perception</span> Visual ability to perceive the world in 3D

Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.

<span class="mw-page-title-main">Eye examination</span> Series of tests assessing vision and pertaining to the eyes

An eye examination, commonly known as an eye test, is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.

<span class="mw-page-title-main">Eye tracking</span> Measuring the point of gaze or motion of an eye relative to the head

Eye tracking is the process of measuring either the point of gaze or the motion of an eye relative to the head. An eye tracker is a device for measuring eye positions and eye movement. Eye trackers are used in research on the visual system, in psychology, in psycholinguistics, marketing, as an input device for human-computer interaction, and in product design. In addition, eye trackers are increasingly being used for assistive and rehabilitative applications such as controlling wheelchairs, robotic arms, and prostheses. Recently, eye tracking has been examined as a tool for the early detection of autism spectrum disorder. There are several methods for measuring eye movement, with the most popular variant using video images to extract eye position. Other methods use search coils or are based on the electrooculogram.

Stereopsis is the component of depth perception retrieved through binocular vision. Stereopsis is not the only contributor to depth perception, but it is a major one. Binocular vision happens because each eye receives a different image because they are in slightly different positions in one's head. These positional differences are referred to as "horizontal disparities" or, more generally, "binocular disparities". Disparities are processed in the visual cortex of the brain to yield depth perception. While binocular disparities are naturally present when viewing a real three-dimensional scene with two eyes, they can also be simulated by artificially presenting two different images separately to each eye using a method called stereoscopy. The perception of depth in such cases is also referred to as "stereoscopic depth".

<span class="mw-page-title-main">Eye movement</span> Movement of the eyes

Eye movement includes the voluntary or involuntary movement of the eyes. Eye movements are used by a number of organisms to fixate, inspect and track visual objects of interests. A special type of eye movement, rapid eye movement, occurs during REM sleep.

Oscillopsia is a visual disturbance in which objects in the visual field appear to oscillate. The severity of the effect may range from a mild blurring to rapid and periodic jumping. Oscillopsia is an incapacitating condition experienced by many patients with neurological disorders. It may be the result of ocular instability occurring after the oculomotor system is affected, no longer holding images steady on the retina. A change in the magnitude of the vestibulo-ocular reflex due to vestibular disease can also lead to oscillopsia during rapid head movements. Oscillopsia may also be caused by involuntary eye movements such as nystagmus, or impaired coordination in the visual cortex and is one of the symptoms of superior canal dehiscence syndrome. Those affected may experience dizziness and nausea. Oscillopsia can also be used as a quantitative test to document aminoglycoside toxicity. Permanent oscillopsia can arise from an impairment of the ocular system that serves to maintain ocular stability. Paroxysmal oscillopsia can be due to an abnormal hyperactivity in the peripheral ocular or vestibular system.

Microsaccades are a kind of fixational eye movement. They are small, jerk-like, involuntary eye movements, similar to miniature versions of voluntary saccades. They typically occur during prolonged visual fixation, not only in humans, but also in animals with foveal vision. Microsaccade amplitudes vary from 2 to 120 arcminutes. The first empirical evidence for their existence was provided by Robert Darwin, the father of Charles Darwin.

<span class="mw-page-title-main">Troxler's fading</span> Optical illusion affecting visual perception

Troxler's fading, also called Troxler fading or the Troxler effect, is an optical illusion affecting visual perception. When one fixates on a particular point for even a short period of time, an unchanging stimulus away from the fixation point will fade away and disappear. Research suggests that at least some portion of the perceptual phenomena associated with Troxler's fading occurs in the brain.This also happens if you say are in a dark room and there is a little bit of light coming out of a window as you stare you may start to experience this phenomenon with the room around you going pitch black.

<span class="mw-page-title-main">Retinal implant</span>

A retinal implant is a visual prosthesis for restoration of sight to patients blinded by retinal degeneration. The system is meant to partially restore useful vision to those who have lost their photoreceptors due to retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Retinal implants are being developed by a number of private companies and research institutions, and three types are in clinical trials: epiretinal, subretinal, and suprachoroidal. The implants introduce visual information into the retina by electrically stimulating the surviving retinal neurons. So far, elicited percepts had rather low resolution, and may be suitable for light perception and recognition of simple objects.

<span class="mw-page-title-main">Peripheral drift illusion</span> Type of optical illusion

The peripheral drift illusion (PDI) refers to a motion illusion generated by the presentation of a sawtooth luminance grating in the visual periphery. This illusion was first described by Faubert and Herbert (1999), although a similar effect called the "escalator illusion" was reported by Fraser and Wilcox (1979). A variant of the PDI was created by Kitaoka Akiyoshi and Ashida (2003) who took the continuous sawtooth luminance change, and reversed the intermediate greys. Kitaoka has created numerous variants of the PDI, and one called "rotating snakes" has become very popular. The latter demonstration has kindled great interest in the PDI.

Alfred Lukyanovich Yarbus was a Soviet psychologist who studied eye movements in the 1950s and 1960s.

<span class="mw-page-title-main">Contrast (vision)</span> Visible difference in brightness or color

Contrast is the difference in luminance or color that makes an object visible against a background of different luminance or color. The human visual system is more sensitive to contrast than to absolute luminance; thus, we can perceive the world similarly despite significant changes in illumination throughout the day or across different locations.

<span class="mw-page-title-main">Fixation (visual)</span> Maintaining ones gaze on a single location

Fixation or visual fixation is the maintaining of the gaze on a single location. An animal can exhibit visual fixation if it possess a fovea in the anatomy of their eye. The fovea is typically located at the center of the retina and is the point of clearest vision. The species in which fixational eye movement has been verified thus far include humans, primates, cats, rabbits, turtles, salamanders, and owls. Regular eye movement alternates between saccades and visual fixations, the notable exception being in smooth pursuit, controlled by a different neural substrate that appears to have developed for hunting prey. The term "fixation" can either be used to refer to the point in time and space of focus or the act of fixating. Fixation, in the act of fixating, is the point between any two saccades, during which the eyes are relatively stationary and virtually all visual input occurs. In the absence of retinal jitter, a laboratory condition known as retinal stabilization, perceptions tend to rapidly fade away. To maintain visibility, the nervous system carries out a procedure called fixational eye movement, which continuously stimulates neurons in the early visual areas of the brain responding to transient stimuli. There are three categories of fixational eye movement: microsaccades, ocular drifts, and ocular microtremor. At small amplitudes the boundaries between categories become unclear, particularly between drift and tremor.

Tom Norman Cornsweet was an American experimental psychologist known for his pioneering work in visual perception, especially the effect that bears his name, and in the development of ophthalmic instrumentation.

Microperimetry, sometimes called fundus-controlled perimetry, is a type of visual field test which uses one of several technologies to create a "retinal sensitivity map" of the quantity of light perceived in specific parts of the retina in people who have lost the ability to fixate on an object or light source. The main difference with traditional perimetry instruments is that, microperimetry includes a system to image the retina and an eye tracker to compensate eye movements during visual field testing.

Michele Rucci is an Italian born neuroscientist and biomedical engineer who studies visual perception. He is a Professor of Brain and Cognitive Sciences and member of the Center for Visual Science at the University of Rochester.

References

  1. Riggs, L. A.; Ratliff, F.; Cornsweet, J. C.; Cornsweet, T. M. N. (1953). "The Disappearance of Steadily Fixated Visual Test Objects". Journal of the Optical Society of America. 43 (6): 495–501. Bibcode:1953JOSA...43..495R. doi:10.1364/JOSA.43.000495. PMID   13070111.
  2. Rucci, M., Iovin, R., Poletti, M., Santini, F. (2007). "Miniature Eye Movements Enhance Fine Spatial Detail." Nature,447(7146), 851-854.
  3. "Eye flickers key for fine detail". BBC News. June 2007.
  4. Alexander RG, Martinez-Conde S (2019). "Fixational Eye Movements". In Klein C, Ettinger U (eds.). Eye Movement Research: An Introduction to its Scientific Foundations and Applications. Studies in Neuroscience, Psychology and Behavioral Economics. Cham: Springer International Publishing. pp. 73–115. doi:10.1007/978-3-030-20085-5_3. ISBN   978-3-030-20085-5.
  5. Santini, F., Redner, G., Iovin, R., Rucci, M. (2007)."EyeRIS: A general-purpose system for eye movement contingent display control" Behavior Research Methods. 39(3), 350-364.
  6. Arend, L. E.; Timberlake, G. T. (1986). "What is psychophysically perfect image stabilization? Do perfectly stabilized images always disappear?". Journal of the Optical Society of America A. 3 (2): 235–41. Bibcode:1986JOSAA...3..235A. doi:10.1364/josaa.3.000235. PMID   3950797.