Stark–Heegner theorem

Last updated

In number theory, the Heegner theorem [1] establishes the complete list of the quadratic imaginary number fields whose rings of integers are principal ideal domains. It solves a special case of Gauss's class number problem of determining the number of imaginary quadratic fields that have a given fixed class number.

Contents

Let Q denote the set of rational numbers, and let d be a square-free integer. The field Q(d) is a quadratic extension of Q. The class number of Q(d) is one if and only if the ring of integers of Q(d) is a principal ideal domain. The Baker–Heegner–Stark theorem can then be stated as follows:

If d < 0, then the class number of Q(d) is one if and only if

These are known as the Heegner numbers.

By replacing d with the discriminant D of Q(d) this list is often written as: [2]

History

This result was first conjectured by Gauss in Section 303 of his Disquisitiones Arithmeticae (1798). It was essentially proven by Kurt Heegner in 1952, but Heegner's proof was not accepted until an establishment mathematician Harold Stark rewrote the proof in 1967, which had many commonalities to Heegner's work, but sufficiently many differences that Stark considers the proofs to be different. [3] Heegner "died before anyone really understood what he had done". [4] Stark formally paraphrases Heegner's proof in 1969 (other contemporary papers produced various similar proofs by modular functions. [5]

Alan Baker gave a completely different proof slightly earlier (1966) than Stark's work (or more precisely Baker reduced the result to a finite amount of computation, with Stark's work in his 1963/4 thesis already providing this computation), and won the Fields Medal for his methods. Stark later pointed out that Baker's proof, involving linear forms in 3 logarithms, could be reduced to only 2 logarithms, when the result was already known from 1949 by Gelfond and Linnik. [6]

Stark's 1969 paper ( Stark 1969a ) also cited the 1895 text by Heinrich Martin Weber and noted that if Weber had "only made the observation that the reducibility of [a certain equation] would lead to a Diophantine equation, the class-number one problem would have been solved 60 years ago". Bryan Birch notes that Weber's book, and essentially the whole field of modular functions, dropped out of interest for half a century: "Unhappily, in 1952 there was no one left who was sufficiently expert in Weber's Algebra to appreciate Heegner's achievement." [7]

Deuring, Siegel, and Chowla all gave slightly variant proofs by modular functions in the immediate years after Stark. [8] Other versions in this genre have also cropped up over the years. For instance, in 1985, Monsur Kenku gave a proof using the Klein quartic (though again utilizing modular functions). [9] And again, in 1999, Imin Chen gave another variant proof by modular functions (following Siegel's outline). [10]

The work of Gross and Zagier (1986) ( Gross & Zagier 1986 ) combined with that of Goldfeld (1976) also gives an alternative proof. [11]

Real case

On the other hand, it is unknown whether there are infinitely many d > 0 for which Q(d) has class number 1. Computational results indicate that there are many such fields. Number Fields with class number one provides a list of some of these.

Notes

  1. Elkies (1999) calls this the Heegner theorem (cognate to Heegner points as in page xiii of Darmon (2004)) but omitting Baker's name is atypical. Chowla (1970) gratuitously adds Deuring and Siegel in his paper's title.
  2. Elkies (1999), p. 93.
  3. Stark (2011) page 42
  4. Goldfeld (1985).
  5. Stark (1969a)
  6. Stark (1969b)
  7. Birch (2004)
  8. Chowla (1970)
  9. Kenku (1985).
  10. Chen (1999)
  11. Goldfeld (1985)

Related Research Articles

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<i>abc</i> conjecture The product of distinct prime factors of a,b,c, where c is a+b, is rarely much less than c

The abc conjecture is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. It is stated in terms of three positive integers and that are relatively prime and satisfy . The conjecture essentially states that the product of the distinct prime factors of is usually not much smaller than . A number of famous conjectures and theorems in number theory would follow immediately from the abc conjecture or its versions. Mathematician Dorian Goldfeld described the abc conjecture as "The most important unsolved problem in Diophantine analysis".

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. As of 2024, only special cases of the conjecture have been proven.

In number theory, a Heegner number is a square-free positive integer d such that the imaginary quadratic field has class number 1. Equivalently, the ring of algebraic integers of has unique factorization.

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In mathematics, the Gauss class number problem, as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields having class number n. It is named after Carl Friedrich Gauss. It can also be stated in terms of discriminants. There are related questions for real quadratic fields and for the behavior as .

<span class="mw-page-title-main">Don Zagier</span> American mathematician

Don Bernard Zagier is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the Collège de France in Paris from 2006 to 2014. Since October 2014, he is also a Distinguished Staff Associate at the International Centre for Theoretical Physics (ICTP).

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .

Hilbert's twelfth problem is the extension of the Kronecker–Weber theorem on abelian extensions of the rational numbers, to any base number field. It is one of the 23 mathematical Hilbert problems and asks for analogues of the roots of unity that generate a whole family of further number fields, analogously to the cyclotomic fields and their subfields. Leopold Kronecker described the complex multiplication issue as his liebster Jugendtraum, or "dearest dream of his youth", so the problem is also known as Kronecker's Jugendtraum.

In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.

<span class="mw-page-title-main">Shou-Wu Zhang</span> Chinese-American mathematician (born 1962)

Shou-Wu Zhang is a Chinese-American mathematician known for his work in number theory and arithmetic geometry. He is currently a Professor of Mathematics at Princeton University.

Benedict Hyman Gross is an American mathematician who is a professor at the University of California San Diego, the George Vasmer Leverett Professor of Mathematics Emeritus at Harvard University, and former Dean of Harvard College.

In mathematics, a Heegner point is a point on a modular curve that is the image of a quadratic imaginary point of the upper half-plane. They were defined by Bryan Birch and named after Kurt Heegner, who used similar ideas to prove Gauss's conjecture on imaginary quadratic fields of class number one.

<span class="mw-page-title-main">Dorian M. Goldfeld</span> American mathematician (born 1947)

Dorian Morris Goldfeld is an American mathematician working in analytic number theory and automorphic forms at Columbia University.

The Brumer–Stark conjecture is a conjecture in algebraic number theory giving a rough generalization of both the analytic class number formula for Dedekind zeta functions, and also of Stickelberger's theorem about the factorization of Gauss sums. It is named after Armand Brumer and Harold Stark.

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form

In mathematics, the main conjecture of Iwasawa theory is a deep relationship between p-adic L-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by Mazur and Wiles. The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields, CM fields, elliptic curves, and so on.

<span class="mw-page-title-main">Jeffrey Hoffstein</span> American mathematician

Jeffrey Ezra Hoffstein is an American mathematician, specializing in number theory, automorphic forms, and cryptography.

References