Stewart's theorem

Last updated

In geometry, Stewart's theorem yields a relation between the lengths of the sides and the length of a cevian in a triangle. Its name is in honour of the Scottish mathematician Matthew Stewart, who published the theorem in 1746. [1]

Contents

Statement

Diagram of Stewart's theorem Stewarts theorem.svg
Diagram of Stewart's theorem

Let a, b, c be the lengths of the sides of a triangle. Let d be the length of a cevian to the side of length a. If the cevian divides the side of length a into two segments of length m and n, with m adjacent to c and n adjacent to b, then Stewart's theorem states that

A common mnemonic used by students to memorize this equation (after rearranging the terms) is:

The theorem may be written more symmetrically using signed lengths of segments. That is, take the length AB to be positive or negative according to whether A is to the left or right of B in some fixed orientation of the line. In this formulation, the theorem states that if A, B, C are collinear points, and P is any point, then

[2]

In the special case that the cevian is the median (that is, it divides the opposite side into two segments of equal length), the result is known as Apollonius' theorem.

Proof

The theorem can be proved as an application of the law of cosines. [3]

Let θ be the angle between m and d and θ' the angle between n and d. Then θ' is the supplement of θ, and so cos θ' = −cos θ. Applying the law of cosines in the two small triangles using angles θ and θ' produces

Multiplying the first equation by n and the third equation by m and adding them eliminates cos θ. One obtains

which is the required equation.

Alternatively, the theorem can be proved by drawing a perpendicular from the vertex of the triangle to the base and using the Pythagorean theorem to write the distances b, c, d in terms of the altitude. The left and right hand sides of the equation then reduce algebraically to the same expression. [2]

History

According to Hutton & Gregory (1843 , p. 220), Stewart published the result in 1746 when he was a candidate to replace Colin Maclaurin as Professor of Mathematics at the University of Edinburgh. Coxeter & Greitzer (1967 , p. 6) state that the result was probably known to Archimedes around 300 B.C.E. They go on to say (mistakenly) that the first known proof was provided by R. Simson in 1751. Hutton & Gregory (1843) state that the result is used by Simson in 1748 and by Simpson in 1752, and its first appearance in Europe given by Lazare Carnot in 1803.

See also

Notes

  1. Stewart, Matthew (1746), Some General Theorems of Considerable Use in the Higher Parts of Mathematics, Edinburgh: Sands, Murray and Cochran "Proposition II"
  2. 1 2 Russell 1905 , p. 3
  3. Proof of Stewart's Theorem at PlanetMath .

Related Research Articles

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Kinetic theory of gases</span> Historical physical model of gases

The kinetic theory of gases is a simple, historically significant classical model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion. Their size is assumed to be much smaller than the average distance between the particles. The particles undergo random elastic collisions between themselves and with the enclosing walls of the container. The basic version of the model describes the ideal gas, and considers no other interactions between the particles.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Ceva's theorem</span> Geometric relation between line segments from a triangles vertices and their intersection

In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O, to meet opposite sides at D, E, F respectively. Then, using signed lengths of segments,

In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.

<span class="mw-page-title-main">Ptolemy's theorem</span> Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

<span class="mw-page-title-main">Area of a circle</span> Concept in geometry

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Circumscribed circle</span> Circle that passes through all the vertices of a polygon

In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.

<span class="mw-page-title-main">Small-angle approximation</span> Simplification of the basic trigonometric functions

The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians:

<span class="mw-page-title-main">Apollonius's theorem</span> Relates the length of a median of a triangle to the lengths of its sides

In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

<span class="mw-page-title-main">Sine and cosine</span> Trigonometric functions of an angle

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

In geometry, a cevian is a line that intersects both a triangle's vertex, and also the side that is opposite to that vertex. Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva, who proved a well-known theorem about cevians which also bears his name.

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and center of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, often called the Pythagorean equation:

References

Further reading