Sting (fixture)

Last updated
AGARD-C standard wind tunnel model on a sting fixture (CAD model) AGARD-C model on a sting fixture.png
AGARD-C standard wind tunnel model on a sting fixture (CAD model)
AGARD-C wind tunnel model on a bent sting (CAD model) AGARD-C model on a bent sting.png
AGARD-C wind tunnel model on a bent sting (CAD model)
A hypothetical wind tunnel model on a Z-sting (CAD model) Wind tunnel model on a Z-sting (schematic).png
A hypothetical wind tunnel model on a Z-sting (CAD model)

In experimental fluid mechanics, a sting is a test fixture on which models are mounted for testing, e.g. in a wind tunnel. A sting is usually a long shaft attaching to the downstream end of the model so that it does not much disturb the flow over the model. The rear end of a sting usually has a conical fairing blending into the (wind tunnel) model support structure.

For minimum aerodynamic interference a sting should be as long as possible and have as small a diameter as possible, within the structural safety limits. Critical length of a sting (beyond which its influence on the flow around the model is small) is mostly dependent on Reynolds number. If the flow at the rear end of a model (model base) is laminar, the critical sting length can be as much as 12-15 base diameters. [1] If the flow at model base is turbulent, critical sting length reduces to 3-5 model base diameters. Source [1] also suggests a sting diameter of no more than about 30% of model base diameter. However, this may not be possible in wind tunnels with high dynamic pressures because large aerodynamic loads would cause unacceptably large deflections and/or stresses in the sting. Shorter stings of larger relative diameters must be used in such cases. A good rule-of-thumb is that, for acceptably low and test-conditions-independent aerodynamic interference in a high-Reynolds-number, high-dynamic-pressure wind tunnel, a sting should have a diameter "d" not larger than 30% to 50% of model base diameter "D" and should have a length "L" of at least three model base diameters, e.g. as specified for the AGARD-C calibration model [2] ), see figure.

If the test object (model) is to be placed at high angles of attack relative to the airstream (i.e. at an attitude beyond the operating range of the model support mechanism), a bent sting can be used, see figure. Bent stings usually produce higher aerodynamic interference than straight stings. If the test object (model) has a "boattail" rear end without a well-defined base through which a sting shaft can enter the model, a so-called Z-sting can be used, having a form reminiscent of the Latin letter "Z". The part of the sting entering the model is a thin aerodynamically shaped blade so as to minimize disturbance of the flow; see figure.

Stings often attach, at the front end, to internal wind tunnel balances to measure the forces on the model. Therefore, most stings have a central bore through which the cables from a balance or other in-model instrumentation can be conducted without exposure to the airflow.

When a model is mounted on a wind tunnel balance attached to a sting, care must be taken that no parts of the model touch the sting during a wind tunnel test; the only support of the model must be through the balance.

A CAD model of a monolithic internal six-component wind tunnel balance. The tapered rear end of the balance fits into a female taper on a sting (cable for connecting to the data acquisition system not shown); the model attaches to the cylindrical surface at the left side of the balance Wind tunnel balance - monoblok.png
A CAD model of a monolithic internal six-component wind tunnel balance. The tapered rear end of the balance fits into a female taper on a sting (cable for connecting to the data acquisition system not shown); the model attaches to the cylindrical surface at the left side of the balance

See also

Related Research Articles

Wind tunnel Machine used for studying the effects of air moving around objects

Wind tunnels are large tubes with air blowing through them which are used to replicate the interaction between air and an object flying through the air or moving along the ground. Researchers use wind tunnels to learn more about how an aircraft will fly. NASA uses wind tunnels to test scale models of aircraft and spacecraft. Some wind tunnels are large enough to contain full-size versions of vehicles. The wind tunnel moves air around an object, making it seem as if the object is flying.

Aeroelasticity

Aeroelasticity is the branch of physics and engineering studying the interactions between the inertial, elastic, and aerodynamic forces occurring while an elastic body is exposed to a fluid flow. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity dealing with the static or steady state response of an elastic body to a fluid flow; and dynamic aeroelasticity dealing with the body's dynamic response.

Parasitic drag

Parasitic drag, also known as profile drag, is a type of aerodynamic drag that acts on any object when the object is moving through a fluid. Parasitic drag is a combination of form drag and skin friction drag. It affects all objects regardless of whether they are capable of generating lift.

Speargun Underwater fishing implement

A speargun is a ranged underwater fishing device designed to launch a tethered spear or harpoon to impale fish or other marine animals and targets. Spearguns are used in sport fishing and underwater target shooting. The two basic types are pneumatic and elastic. Spear types come in a number of varieties including threaded, break-away and lined. Floats and buoys are common accessories when targeting larger fish.

In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid around blunt bodies.

Tatra 77 Motor vehicle

The Czechoslovakian Tatra 77 (T77) is by many considered to be the first serial-produced, truly aerodynamically-designed automobile. It was developed by Hans Ledwinka and Paul Jaray, the Zeppelin aerodynamic engineer. Launched in 1934, the Tatra 77 is a coach-built automobile, constructed on a platform chassis with a pressed box-section steel backbone rather than Tatra's trademark tubular chassis, and is powered by a 60 horsepower (45 kW) rear-mounted 2.97-litre air-cooled V8 engine, in later series increased to a 75 horsepower (56 kW) 3.4-litre engine. It possessed advanced engineering features, such as overhead valves, hemispherical combustion chambers, a dry sump, fully independent suspension, rear swing axles and extensive use of lightweight magnesium alloy for the engine, transmission, suspension and body. The average drag coefficient of a 1:5 model of Tatra 77 was recorded as 0.2455. The later model T77a has a top speed of over 150 km/h (93 mph) due to its advanced aerodynamic design which delivers an exceptionally low drag coefficient of 0.212, although some sources claim that this is the coefficient of a 1:5 scale model, not of the car itself.

Propeller (aeronautics)

In aeronautics, a propeller, also called an airscrew, converts rotary motion from an engine or other power source into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis. The blade pitch may be fixed, manually variable to a few set positions, or of the automatically variable "constant-speed" type.

Variable Density Tunnel United States historic place

The Variable Density Tunnel (VDT) was the second wind tunnel at the National Advisory Committee for Aeronautics (NACA) Langley Research Center. Proposed by German aerospace engineer, Max Munk in May, 1921, it was the world's first variable density wind tunnel and allowed for more accurate testing of small-scale models than could be obtained with atmospheric wind tunnels. It was actively used as a wind tunnel from 1923 until its retirement in the 1940s. Langley Research Center historian, James R. Hansen, wrote that the VDT provided results superior to the atmospheric wind tunnels used at the time and was responsible for making NACA, the precursor to NASA, "a world leader in aerodynamic research". It is now on display on the Langley grounds, near the old Reid Conference Center and is a National Historic Landmark.

Expansion and shock tunnels are aerodynamic testing facilities with a specific interest in high speeds and high temperature testing. Shock tunnels use steady flow nozzle expansion whereas expansion tunnels use unsteady expansion with higher enthalpy, or thermal energy. In both cases the gases are compressed and heated until the gases are released, expanding rapidly down the expansion chamber. The tunnels reach speeds from Mach 3 to Mach 30 to create testing conditions that simulate hypersonic to re-entry flight. These tunnels are used by military and government agencies to test hypersonic vehicles that undergo a variety of natural phenomenon that occur during hypersonic flight.

Pressure-sensitive paint (PSP) is a method for measuring air pressure or local oxygen concentration, usually in aerodynamic settings. PSP is paint-like coating which fluoresces under a specific illumination wavelength in differing intensities depending on the external air pressure being applied locally to its surface.

The Bristol Type 92, sometimes known as the Laboratory biplane, was an aircraft built by the Bristol Aeroplane Company to address the differences between wind tunnel cowling models and full scale cowling for radial engines and was designed as a scaled-up version of a wind tunnel model aircraft. One was built and flew in the mid-1920s.

Reynolds number Dimensionless quantity used to help predict fluid flow patterns

The Reynolds number helps predict flow patterns in different fluid flow situations. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. Reynolds numbers are an important dimensionless quantity in fluid mechanics.

Flow conditioning ensures that the “real world” environment closely resembles the “laboratory” environment for proper performance of inferential flowmeters like orifice, turbine, coriolis, ultrasonic etc.

European Transonic Wind Tunnel

The European transonic wind tunnel (ETW) is a high-Reynolds-number transonic wind tunnel using nitrogen as test gas.

Hypervelocity Wind Tunnel 9 Military unit

AEDC Hypervelocity Wind Tunnel 9 is a hypersonic wind tunnel owned by the United States Air Force and operated by National Aerospace Solutions The facility can generate high Mach numbers and high Reynolds for hypersonic ground testing and the validation of computational simulations for the Air Force and Department of Defense.

Propulsion Wind Tunnel Facility Military unit

The Propulsion Wind Tunnel Facility, located at Arnold Engineering Development Complex, Arnold Air Force Base, Tennessee, holds three wind tunnels: the 16-foot transonic (16T), 16-foot supersonic (16S), and the aerodynamic 4-foot transonic (4T) tunnels. The facility is devoted to aerodynamic and propulsion integration testing of large-scale aircraft models. The tunnels are powered by a large compressor plant which allows the wind tunnels to run for extended periods of time. The test unit is owned by the United States Air Force and operated by Aerospace Testing Alliance.

Standard wind tunnel models

Standard wind tunnel models, also known as reference models, calibration models or test check-standards are objects of relatively simple and precisely defined shapes, having known aerodynamic characteristics, that are tested in wind tunnels. Standard models are used in order to verify, by comparison of wind tunnel test results with previously published results, the complete measurement chain in a wind tunnel, including wind tunnel structure, quality of the airstream, model positioning, transducers and force balances, data acquisition system and data reduction software.

AGARD-B wind tunnel model

AGARD-B is a standard wind tunnel model that is used to verify, by comparison of test results with previously published data, the measurement chain in a wind tunnel. Together with its derivative AGARD-C it belongs to a family of AGARD standard wind tunnel models. Its origin dates to the year 1952, and the Second Meeting of the AGARD Wind Tunnel and Model Testing Panel in Rome, Italy, when it was decided to define two standard wind tunnel model configurations to be used for exchange of test data and comparison of test results of same models tested in different wind tunnels. The idea was to establish standards of comparison between wind tunnels and improve the validity of wind tunnel tests. Among the standard wind tunnel models, AGARD model configuration B (AGARD-B) has become by far the most popular. Initially intended for the supersonic wind tunnels, the AGARD-B configuration has since been tested in many wind tunnels at a wide range of Mach numbers, from low subsonic, through transonic to hypersonic. Therefore, a considerable database of test results is available.

Auto Research Center

Auto Research Center, also known as ARC Indy, is a research and development company with headquarters in Indianapolis, Indiana USA. It was founded as Reynard Motorsports North American headquarters, and became its own company in 2002.

MARHy Wind Tunnel

The MARHy Hypersonic low density Wind Tunnel, located at the ICARE Laboratory in Orléans, France, is a research facility used extensively for fundamental and applied research of fluid dynamic phenomena in rarefied compressible flows. Its name is an acronym for Mach Adaptable Rarefied Hypersonic and the wind tunnel is recorded under this name under the European portal MERIL.

References

  1. 1 2 A.Pope, "Wind Tunnel Calibration Techniques", AGARDograph 54, AGARD, 1961
  2. Wind Tunnel Calibration Models, AGARD Specification 2, AGARD, 1958