Striosome

Last updated
Striosome
Identifiers
NeuroLex ID nlx_anat_20090506
Anatomical terms of neuroanatomy

The striosomes (also referred to as patches) are one of two complementary chemical compartments within the striatum (the other compartment is known as the matrix) that can be visualized by staining for immunocytochemical markers such as acetylcholinesterase, [1] enkephalin, substance P, limbic system-associated membrane protein (LAMP), [2] AMPA receptor subunit 1 (GluR1), [3] dopamine receptor subunits, and calcium binding proteins. [4] Striosomal abnormalities have been associated with neurological disorders, such as mood dysfunction in Huntington's disease, [5] though their precise function remains unknown. Striosomes were discovered by Ann Graybiel in 1978 using acetylcholinesterase histochemistry.

Matrix and Striosome Compartments: Fluorescence microscopy image of a coronal mouse brain section, cut through the striatum (caudate putamen, CP). The matrix/striosome division is here revealed by dual immunohistochemical (calbindin, CALB; green) and transgenic (red fluorescent protein, RFP; red) labeling of the matrix compartment, using the matrix-specific Cre-mouse line Gpr101-Cre. Unlabeled patches constitute striosomes. Matrix Striosomes mar5.jpg
Matrix and Striosome Compartments: Fluorescence microscopy image of a coronal mouse brain section, cut through the striatum (caudate putamen, CP). The matrix/striosome division is here revealed by dual immunohistochemical (calbindin, CALB; green) and transgenic (red fluorescent protein, RFP; red) labeling of the matrix compartment, using the matrix-specific Cre-mouse line Gpr101-Cre. Unlabeled patches constitute striosomes.

Related Research Articles

Striatum Nucleus in the basal ganglia of the brain

The striatum, or corpus striatum, is a nucleus in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamatergic and GABAergic inputs from different sources; and serves as the primary input to the rest of the basal ganglia.

Acetylcholine Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals as a neurotransmitter—a chemical message released by nerve cells to send signals to other cells, such as neurons, muscle cells and gland cells. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic. Substances that increase or decrease the overall activity of the cholinergic system are called cholinergics and anticholinergics, respectively.

Nigrostriatal pathway

The nigrostriatal pathway is a bilateral dopaminergic pathway in the brain that connects the substantia nigra pars compacta (SNc) in the midbrain with the dorsal striatum in the forebrain. It is one of the four major dopamine pathways in the brain, and is critical in the production of movement as part of a system called the basal ganglia motor loop. Dopaminergic neurons of this pathway release dopamine from axon terminals that synapse onto GABAergic medium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), located in the striatum.

Glutamate receptor

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

Protein tyrosine phosphatase

Protein tyrosine phosphatases are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. Protein tyrosine (pTyr) phosphorylation is a common post-translational modification that can create novel recognition motifs for protein interactions and cellular localization, affect protein stability, and regulate enzyme activity. As a consequence, maintaining an appropriate level of protein tyrosine phosphorylation is essential for many cellular functions. Tyrosine-specific protein phosphatases catalyse the removal of a phosphate group attached to a tyrosine residue, using a cysteinyl-phosphate enzyme intermediate. These enzymes are key regulatory components in signal transduction pathways and cell cycle control, and are important in the control of cell growth, proliferation, differentiation, transformation, and synaptic plasticity.

Primate basal ganglia

The basal ganglia form a major brain system in all species of vertebrates, but in primates there are special features that justify a separate consideration. As in other vertebrates, the primate basal ganglia can be divided into striatal, pallidal, nigral, and subthalamic components. In primates, however, there are two pallidal subdivisions called the external globus pallidus (GPe) and internal globus pallidus (GPi). Also in primates, the dorsal striatum is divided by a large tract called the internal capsule into two masses named the caudate nucleus and the putamen—in most other species no such division exists, and only the striatum as a whole is recognized. Beyond this, there is a complex circuitry of connections between the striatum and cortex that is specific to primates. This complexity reflects the difference in functioning of different cortical areas in the primate brain.

Reeler

A reeler is a mouse mutant, so named because of its characteristic "reeling" gait. This is caused by the profound underdevelopment of the mouse's cerebellum, a segment of the brain responsible for locomotion. The mutation is autosomal and recessive, and prevents the typical cerebellar folia from forming.

Medium spiny neuron Type of GABAergic neuron in the striatum

Medium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), are a special type of GABAergic inhibitory cell representing 95% of neurons within the human striatum, a basal ganglia structure. Medium spiny neurons have two primary phenotypes : D1-type MSNs of the direct pathway and D2-type MSNs of the indirect pathway. Most striatal MSNs contain only D1-type or D2-type dopamine receptors, but a subpopulation of MSNs exhibit both phenotypes.

A heteromer is something that consists of different parts; the antonym of homomeric. Examples are:

SCH-58261

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

GRIN2A

Glutamate [NMDA] receptor subunit epsilon-1 is a protein that in humans is encoded by the GRIN2A gene.

GRIN1

Glutamate [NMDA] receptor subunit zeta-1 is a protein that in humans is encoded by the GRIN1 gene.

GRIA1

Glutamate receptor 1 is a protein that in humans is encoded by the GRIA1 gene.

Ephrin A3

Ephrin A3 is a protein that in humans is encoded by the EFNA3 gene.

PTPN5

Protein tyrosine phosphatase non-receptor type 5 is an enzyme that in humans is encoded by the PTPN5 gene.

CHRNA6

Cholinergic receptor, nicotinic, alpha 6, also known as nAChRα6, is a protein that in humans is encoded by the CHRNA6 gene. The CHRNA6 gene codes for the α6 nicotinic receptor subunit that is found in certain types of nicotinic acetylcholine receptors found primarily in the brain. Neural nicotinic acetylcholine receptors containing α6 subunits are expressed on dopamine-releasing neurons in the midbrain, and dopamine release following activation of these neurons is thought to be involved in the addictive properties of nicotine. Due to their selective localisation on dopaminergic neurons, α6-containing nACh receptors have also been suggested as a possible therapeutic target for the treatment of Parkinson's disease. In addition to nicotine, research in animals has implicated alpha-6-containing nAChRs in the abusive and addictive properties of ethanol, with mecamylamine demonstrating a potent ability to block these properties.

Ann Graybiel American neuroscientist

Ann Martin Graybiel is an Institute Professor and a faculty member in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology. She is also an investigator at the McGovern Institute for Brain Research. She is an expert on the basal ganglia and the neurophysiology of habit formation, implicit learning, and her work is relevant to Parkinson's disease, Huntington's disease, obsessive–compulsive disorder, substance abuse and other disorders that affect the basal ganglia.

Basal ganglia disease Group of physical problems resulting from basal ganglia dysfunction

Basal ganglia disease is a group of physical problems that occur when the group of nuclei in the brain known as the basal ganglia fail to properly suppress unwanted movements or to properly prime upper motor neuron circuits to initiate motor function. Research indicates that increased output of the basal ganglia inhibits thalamocortical projection neurons. Proper activation or deactivation of these neurons is an integral component for proper movement. If something causes too much basal ganglia output, then the ventral anterior (VA) and ventral lateral (VL) thalamocortical projection neurons become too inhibited, and one cannot initiate voluntary movement. These disorders are known as hypokinetic disorders. However, a disorder leading to abnormally low output of the basal ganglia leads to reduced inhibition, and thus excitation, of the thalamocortical projection neurons which synapse onto the cortex. This situation leads to an inability to suppress unwanted movements. These disorders are known as hyperkinetic disorders.

Levodopa-induced dyskinesia (LID) is a form of dyskinesia associated with levodopa (l-DOPA), used to treat Parkinson's disease. It often involves hyperkinetic movements, including chorea, dystonia, and athetosis.

D. James "Jim" Surmeier, an American neuroscientist and physiologist of note, is the Nathan Smith Davis Professor and Chair in the Department of Physiology at Northwestern University Feinberg School of Medicine. His research is focused on the cellular physiology and circuit properties of the basal ganglia in health and disease, primarily Parkinson's and Huntington's disease as well as pain.

References

  1. Graybiel AM, Ragsdale CW Jr (Nov 1978). "Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining". Proc Natl Acad Sci U S A. 75 (11): 5723–6. doi: 10.1073/pnas.75.11.5723 . PMC   393041 . PMID   103101.
  2. Prensa L, Giménez-Amaya JM, Parent A (Nov 1999). "Chemical heterogeneity of the striosomal compartment in the human striatum". J Comp Neurol. 413 (4): 603–18. doi:10.1002/(SICI)1096-9861(19991101)413:4<603::AID-CNE9>3.0.CO;2-K. PMID   10495446.
  3. Martin LJ, Blackstone CD, Huganir RL, Price DL (Feb 1993). "The striatal mosaic in primates: striosomes and matrix are differentially enriched in ionotropic glutamate receptor subunits". J. Neurosci. 13 (2): 782–92. doi: 10.1523/JNEUROSCI.13-02-00782.1993 . PMC   6576641 . PMID   7678861.
  4. O'Kusky JR, Nasir J, Cicchetti F, Parent A, Hayden MR (Feb 1999). "Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington's disease gene". Brain Res. 818 (2): 468–79. doi:10.1016/S0006-8993(98)01312-2. PMID   10082833. S2CID   45823601.
  5. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ, Graybiel AM, Faull RL (Jan 2007). "Striosomes and mood dysfunction in Huntington's disease". Brain. 130 (1): 206–21. doi: 10.1093/brain/awl243 . PMID   17040921.
  6. Reinius B; et al. (March 27, 2015). "Conditional targeting of medium spiny neurons in the striatal matrix". Front. Behav. Neurosci. 9: 71. doi: 10.3389/fnbeh.2015.00071 . PMC   4375991 . PMID   25870547.