Subjective expected relative similarity

Last updated

Subjective expected relative similarity (SERS) is a normative and descriptive theory that predicts and explains cooperation levels in a family of games termed Similarity Sensitive Games (SSG), among them the well-known Prisoner's Dilemma game (PD). [1] SERS was originally developed in order to (i) provide a new rational solution to the PD game and (ii) to predict human behavior in single-step PD games. It was further developed to account for: (i) repeated PD games, (ii) evolutionary perspectives and, as mentioned above, (iii) the SSG subgroup of 2×2 games. SERS predicts that individuals cooperate whenever their subjectively perceived similarity with their opponent exceeds a situational index derived from the game's payoffs, termed the similarity threshold of the game. SERS proposes a solution to the rational paradox associated with the single step PD and provides accurate behavioral predictions. The theory was developed by Prof. Ilan Fischer at the University of Haifa.[ citation needed ]

Contents

The Prisoner's Dilemma

The dilemma is described by a 2 × 2 payoff matrix that allows each player to choose between a cooperative and a competitive (or defective) move. If both players cooperate, each player obtains the reward (R) payoff. If both defect, each player obtains the punishment (P) payoff. However, if one player defects while the other cooperates, the defector obtains the temptation (T) payoff and the cooperator obtains the sucker's (S) payoff, where (and, assuring that sharing the payoffs awarded for uncoordinated choices does not exceed the payoffs obtained by mutual cooperation).

Given the payoff structure of the game (see Table 1), each individual player has a dominant strategy of defection. This dominant strategy yields a better payoff regardless of the opponent's choice. By choosing to defect, players protect themselves from exploitation and retain the option to exploit a trusting opponent. Because this is the case for both players, mutual defection is the only Nash equilibrium of the game. However, this is a deficient equilibrium (since mutual cooperation results in a better payoff for both players). [2]

The PD game payoff matrix:

Table 1:Payoffs are denoted as temptation (T), reward (R), punishment (P) and sucker (S)
Player 2 cooperatesPlayer 2 defects
Player 1 cooperatesR, RS, T
Player 1 defectsT, SP, P

The repeated prisoner's dilemma

Players that knowingly interact for several games (where the end point of the game is unknown), thus playing a repeated Prisoner's Dilemma game, may still be motivated to cooperate with their opponent while attempting to maximise their payoffs along the entire set of their repeated games. Such players face a different challenge of choosing an efficient and lucrative strategy for the repeated play. This challenge may become more complex when individuals are embedded in an ecology, having to face many opponents with various and unknown strategies. [3] [4] [5]

The SERS theory

SERS assumes that the similarity between the players is subjectively and individually perceived (denoted as , where ). Two players confronting each other may have either identical or different perceptions of their similarity to their opponent. In other words, similarity perceptions need neither be symmetric nor correspond to formal logic constraints. After perceiving , each player chooses between cooperation and defection, attempting to maximize the expected outcome. This means that each player estimates his or her expected payoffs under each of two possible courses of action. The expected value of cooperation is given by and the expected payoff of defection is given by . Hence, cooperation provides a higher expected payoff whenever which may also be expressed further as:

Cooperate if . Defining , we obtain a simple decision rule: cooperate whenever , where denotes the level of perceived similarity with the opponent, and denotes the similarity threshold derived from the payoff matrix.

Fig. 1: The SERS Decision Tree for single step PD games. The expected value of cooperation is given by
R x ps + S x (1-ps), the expected value for defection is given by P x ps + T x (1 - ps). Thus cooperation should be preferred over defection whenever R x ps + S x (1 - ps) > P x ps + T x (1 - ps), or when ps > ps* SERS.png
Fig. 1: The SERS Decision Tree for single step PD games. The expected value of cooperation is given by
R × ps + S × (1−ps), the expected value for defection is given by P × ps + T × (1 − ps). Thus cooperation should be preferred over defection whenever R × ps + S × (1 − ps) > P × ps + T × (1 − ps), or when ps > ps*

To illustrate, consider a PD payoff matrix with . The similarity threshold calculated for the game is given by: . Thus a player perceiving the similarity with the opponent, , exceeding 0.71 should cooperate in order to maximise his expected payoffs.

Empirical evidence

Several experiments were conducted to test whether SERS provides not only a normative theory but also a descriptive theory of human behaviour.
For example, an experiment involving 215 university undergraduates revealed an average of 30% cooperation rate for a payoff matrix with and an average of 46% cooperation rate for a payoff matrix . Participants cooperated 47% under high level of induced similarity and only 29% under low level of induced similarity. The cooperation rate for manipulating the perception of similarity of the opponent, revealed an increase from 67% to 80% of cooperation for the lower similarity threshold and from 40% to 70% cooperation for the higher similarity threshold.
Other experiments with various similarity induction methods and payoff matrices further confirmed SERS's status as a descriptive theory of human behaviour. [1] [2]

Table 2:Level of cooperation for two similarity threshold and two levels of similarity
Similarity (ps)
Low SimilarityHigh SimilarityMarginal Mean
Similarity ThresholdLow ps*= 0.6333%59%46%
High ps* = 0.825%34%30%
Marginal Mean29%47%

The SERS theory for Repeated PD Games

Experiments on the impact of SERS on repeated games are presently being conducted and analysed at the University of Haifa and the Max Planck Institute for Research on Collective Goods in Bonn.[ citation needed ]

Similarity sensitive games

The PD game is not the only similarity sensitive game. Games for which the choice of the action with the higher expected value depends on the value of are defined as Similarity Sensitive Games (SSGs), whereas others are nonsimilarity sensitive. Focusing only on the 24 completely rank-ordered and symmetric games, we can mark 12 SSGs. After eliminating games that reflect permutations of other games generated either by switching rows, columns, or both rows and columns, we are left with six basic (completely rank-ordered and symmetric) SSGs. These are games for which SERS provides a rational and payoff-maximizing strategy that recommends which alternative to choose for any given perception of similarity with the opponent. [1]

Mimicry and Relative Similarity (MaRS)

Developing the SERS theory into an evolutionary strategy yields the Mimicry and Relative Similarity (MaRS) algorithm. Fusing enacted and expected mimicry generates a powerful and cooperative mechanism that enhances fitness and reduces the risks associated with trust and cooperation. When conflicts take the form of repeated PD games, individuals get the opportunity to learn and monitor the extent of similarity with their opponents. They can then react by choosing whether to enact, expect, or exclude mimicry. This rather simple behavior has the capacity to protect individuals from exploitation and drive the evolution of cooperation within entire populations. MaRS paves the way for the induction of cooperation and supports the survival of other cooperative strategies. The existence of MaRS in heterogeneous populations helps those cooperative strategies that do not have the capacity of MaRS to combat hostile and random opponents. Despite the fact that MaRS cannot prevail in a duel with an unconditional defector, interacting within heterogeneous populations allows MaRS to fight unpredictable and hostile strategies and cooperate with cooperative ones, including itself. The operation of MaRS promotes cooperation, minimizes the extent of exploitation, and accounts for high fitness levels. Testing the model in computer simulations of behavioral niches, populated with agents that enact various strategies and learning algorithms, shows how mimicry and relative similarity outperforms all the opponent strategies it was tested against, pushes noncooperative opponents toward extinction, and promotes the development of cooperative populations. [6]

Fig. 2: The transition of MaRS among three mimicry modes: enacted, expected, and excluded. Each transition is conditioned upon the detection of up-to-date similarity levels by the passive similarity index psp, the reactive similarity index psr, or both. The criterion for sufficient similarity is the similarity threshold ps* defined by SERS Mimicry and Relative Similarity Theory.png
Fig. 2: The transition of MaRS among three mimicry modes: enacted, expected, and excluded. Each transition is conditioned upon the detection of up-to-date similarity levels by the passive similarity index psp, the reactive similarity index psr, or both. The criterion for sufficient similarity is the similarity threshold ps* defined by SERS

See also

Related Research Articles

Minimax is a decision rule used in artificial intelligence, decision theory, game theory, statistics, and philosophy for minimizing the possible loss for a worst case scenario. When dealing with gains, it is referred to as "maximin"—to maximize the minimum gain. Originally formulated for n-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty.

The prisoner's dilemma is a standard example of a game analyzed in game theory that shows why two completely rational individuals might not cooperate, even if it appears that it is in their best interests to do so. It was originally framed by Merrill Flood and Melvin Dresher while working at RAND in 1950. Albert W. Tucker formalized the game with prison sentence rewards and named it "prisoner's dilemma", a version of which was stated by William Poundstone in his 1993 book Prisoner's Dilemma as:

Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of speaking to or exchanging messages with the other. The police admit they don't have enough evidence to convict the pair on the principal charge. They plan to sentence both to a year in prison on a lesser charge. Simultaneously, the police offer each prisoner a Faustian bargain.

In game theory, the Nash equilibrium, named after the mathematician John Forbes Nash Jr., is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

Tit for tat English saying meaning "equivalent retaliation"

Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558.

The game of chicken, also known as the hawk–dove game or snowdrift game, is a model of conflict for two players in game theory. The principle of the game is that while the ideal outcome is for one player to yield, the individuals try to avoid it out of pride for not wanting to look like a 'chicken'. Each player taunts the other to increase the risk of shame in yielding. However, when one player yields, the conflict is avoided, and the game is for the most part over.

In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

A coordination game is a type of simultaneous game found in game theory. It describes the situation where a player will earn a higher payoff when he selects the same course of action as another player. The game is not one of pure conflict, which results in multiple pure strategy Nash equilibria in which players choose matching strategies. Figure 1 shows a 2-player example.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

Matching pennies is the name for a simple game used in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even keeps both pennies, so wins one from Odd. If the pennies do not match Odd keeps both pennies, so receives one from Even.

In game theory, grim trigger is a trigger strategy for a repeated game.

In game theory, the stag hunt, sometimes referred to as the assurance game, trust dilemma or common interest game, describes a conflict between safety and social cooperation. The stag hunt problem originated with philosopher Jean-Jacques Rousseau in his Discourse on Inequality. In Rousseau's telling, two hunters must decide separately, and without the other knowing, whether to hunt a stag or a hare. However, both hunters know the only way to successfully hunt a stag is with the other's help. One hunter can catch a hare alone with less effort and less time, but it is worth far less than a stag and has much less meat. Rousseau therefore posits it would be much better for each hunter, acting individually, to give up total autonomy and minimal risk, which brings only the small reward of the hare. Instead, each hunter should separately choose the more ambitious and far more rewarding goal of getting the stag, thereby giving up some autonomy in exchange for the other hunter's cooperation and added might. Commentators have seen the situation as a useful analogy for many kinds of social cooperation, such as international agreements on climate change.

In game theory, normal form is a description of a game. Unlike extensive form, normal-form representations are not graphical per se, but rather represent the game by way of a matrix. While this approach can be of greater use in identifying strictly dominated strategies and Nash equilibria, some information is lost as compared to extensive-form representations. The normal-form representation of a game includes all perceptible and conceivable strategies, and their corresponding payoffs, for each player.

The chainstore paradox is an apparent game theory paradox involving the chain store game, where a "deterrence strategy" appears optimal instead of the backward induction strategy of standard game theory reasoning.

In game theory, a symmetric game is a game where the payoffs for playing a particular strategy depend only on the other strategies employed, not on who is playing them. If one can change the identities of the players without changing the payoff to the strategies, then a game is symmetric. Symmetry can come in different varieties. Ordinally symmetric games are games that are symmetric with respect to the ordinal structure of the payoffs. A game is quantitatively symmetric if and only if it is symmetric with respect to the exact payoffs. A partnership game is a symmetric game where both players receive identical payoffs for any strategy set. That is, the payoff for playing strategy a against strategy b receives the same payoff as playing strategy b against strategy a.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem aims to justify a puzzling aspect of mixed strategy Nash equilibria: that each player is wholly indifferent amongst each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.

Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game. When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

In game theory, a game is said to be a potential game if the incentive of all players to change their strategy can be expressed using a single global function called the potential function. The concept originated in a 1996 paper by Dov Monderer and Lloyd Shapley.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

In game theory, the traveler's dilemma is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty. Surprisingly, the Nash equilibrium is for both players to aggressively lowball. The traveler's dilemma is notable in that naive play appears to outperform the Nash equilibrium; this apparent paradox also appears in the centipede game and the finitely-iterated prisoner's dilemma.

References

  1. 1 2 3 Fischer, I. (2012). Similarity or reciprocity? On the determinants of cooperation in similarity-sensitive games. Psychological Inquiry, 23(1), 48-54.
  2. 1 2 Fischer, I. (2009). Friend or foe: subjective expected relative similarity as a determinant of cooperation. Journal of Experimental Psychology: General, 138(3), 341.
  3. Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390-1396.
  4. Axelrod, Robert (1984), The Evolution of Cooperation, Basic Books, ISBN   0-465-02122-0
  5. Nowak, M., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game. Nature, 364(6432), 56-58.
  6. Fischer, I., Frid, A., Goerg, S. J., Levin, S. A., Rubenstein, D. I., & Selten, R. (2013). Fusing enacted and expected mimicry generates a winning strategy that promotes the evolution of cooperation. Proceedings of the National Academy of Sciences, 110(25), 10229-10233.