Sum of two cubes

Last updated
Visual proof of the formulas for the sum and difference of two cubes Sum and difference of 2 cubes.svg
Visual proof of the formulas for the sum and difference of two cubes

In mathematics, the sum of two cubes is a cubed number added to another cubed number.

Contents

Factorization

Every sum of cubes may be factored according to the identity in elementary algebra. [1]

Binomial numbers generalize this factorization to higher odd powers.

"SOAP" method

The mnemonic "SOAP", standing for "Same, Opposite, Always Positive", is sometimes used to memorize the correct placement of the addition and subtraction symbols while factorizing cubes. [2] When applying this method to the factorization, "Same" represents the first term with the same sign as the original expression, "Opposite" represents the second term with the opposite sign as the original expression, and "Always Positive" represents the third term and is always positive.

original
sign
SameOppositeAlways
Positive

Proof

Starting with the expression, and multiplying by a + b [1] distributing a and b over , [1] and canceling the like terms, [1] .

Similarly for the difference of cubes,

Fermat's last theorem

Fermat's last theorem in the case of exponent 3 states that the sum of two non-zero integer cubes does not result in a non-zero integer cube. The first recorded proof of the exponent 3 case was given by Euler. [3]

Taxicab and Cabtaxi numbers

A Taxicab number is the smallest positive number that can be expressed as a sum of two positive integer cubes in n distinct ways. The smallest taxicab number after Ta(1) = 1, is Ta(2) = 1729, [4] expressed as

or

Ta(3), the smallest taxicab number expressed in 3 different ways, is 87,539,319, expressed as

, or

A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [5] expressed as:

or

Cabtaxi(3), the smallest Cabtaxi number expressed in 3 different ways, is 4104, [6] expressed as

, or

See also

Related Research Articles

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation:

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem. It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many kth powers of positive integers is itself a kth power, then n is greater than or equal to k:

<span class="mw-page-title-main">Fundamental theorem of arithmetic</span> Integers have unique prime factorizations

In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example,

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.

In algebra, an irreducible element of an integral domain is a non-zero element that is not invertible, and is not the product of two non-invertible elements.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form: where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ....

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

15 (fifteen) is the natural number following 14 and preceding 16.

1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is also known as the Ramanujan number or Hardy–Ramanujan number, named after G. H. Hardy and Srinivasa Ramanujan.

<span class="mw-page-title-main">Taxicab number</span> Smallest integer expressable as a sum of two positive integer cubes in n distinct ways

In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is 1729 = Ta(2) = 13 + 123 = 93 + 103, also known as the Hardy-Ramanujan number.

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

1728 is the natural number following 1727 and preceding 1729. It is a dozen gross, or one great gross. It is also the number of cubic inches in a cubic foot.

In mathematics, specifically in number theory, a binomial number is an integer which can be obtained by evaluating a homogeneous polynomial containing two terms. It is a generalization of a Cunningham number.

In mathematics and statistics, sums of powers occur in a number of contexts:

1105 is the natural number following 1104 and preceding 1106.

References

  1. 1 2 3 4 McKeague, Charles P. (1986). Elementary Algebra (3rd ed.). Academic Press. p. 388. ISBN   0-12-484795-1.
  2. Kropko, Jonathan (2016). Mathematics for social scientists. Los Angeles, LA: Sage. p. 30. ISBN   9781506304212.
  3. Dickson, L. E. (1917). "Fermat's Last Theorem and the Origin and Nature of the Theory of Algebraic Numbers". Annals of Mathematics. 18 (4): 161–187. doi:10.2307/2007234. ISSN   0003-486X. JSTOR   2007234.
  4. "A001235 - OEIS". oeis.org. Retrieved 2023-01-04.
  5. Schumer, Peter (2008). "Sum of Two Cubes in Two Different Ways". Math Horizons. 16 (2): 8–9. doi:10.1080/10724117.2008.11974795. JSTOR   25678781.
  6. Silverman, Joseph H. (1993). "Taxicabs and Sums of Two Cubes". The American Mathematical Monthly. 100 (4): 331–340. doi:10.2307/2324954. ISSN   0002-9890. JSTOR   2324954.

Further reading