The Sumudu transform is an integral transform introduced in 1990 by G K Watagala. [1] [2] [3] It is defined over the set of functions [4] [5] [6]
A={f(t):∋M,p,q>0,|f(t)|=Mexp(1/u)}{\displaystyle A=\{f(t):\ni M,p,q>0,|f(t)|=M\exp(1/u)\}}
where p≤u≤q{\displaystyle p\leq u\leq q}, the Sumudu transform is defined as
S[f(t)]=1u∫0∞f(t)exp(−tu)dt.{\displaystyle S[f(t)]={\frac {1}{u}}\int _{0}^{\infty }f(t)\exp \left(-{\frac {t}{u}}\right)\,dt.}
Sumudu transform is 1/u Laplace transform S[f(t)](u)=1uL[f(t)](1u){\displaystyle S[f(t)](u)={\frac {1}{u}}L[f(t)]({\frac {1}{u}})} And with u2 Elzaki transform S[f(t)](u)=u2E[f(t)](u){\displaystyle S[f(t)](u)=u^{2}E[f(t)](u)}