Super envy-freeness

Last updated

A super-envy-free division is a kind of a fair division. It is a division of resources among n partners, in which each partner values his/her share at strictly more than his/her due share of 1/n of the total value, and simultaneously, values the share of every other partner at strictly less than 1/n. Formally, in a super-envy-free division of a resource C among n partners, each partner i, with value measure Vi, receives a share Xi such that:

Contents

.

This is a strong fairness requirement: it is stronger than both envy-freeness and super-proportionality.

Existence

Super envy-freeness was introduced by Julius Barbanel in 1996. [1] He proved that a super-envy-free cake-cutting exists if-and-only-if the value measures of the n partners are linearly independent . "Linearly independent" means that there is no vector of n non-zero real numbers for which ,

Computation

In 1999, [2] William Webb presented an algorithm that finds a super-envy-free allocation in this case. His algorithm is based on a witness to the fact that the measures are independent. A witness is an n-by-n matrix, in which element (i,j) is the value assigned by agent i to some piece j (where the pieces 1,...,n can be any partition of the cake, for example, partition to equal-length intervals). The matrix should be invertible - this is a witness to the linear independence of the measures.

Using such a matrix, the algorithm partitions each of the n pieces in a near-exact division. It can be shown that, if the matrix is invertible and the approximation factor is sufficiently small (w.r.t. the values in the inverse of the matrix), then the resulting allocation is indeed super-envy-free.

The run-time of the algorithm depends on the properties of the matrix. However, if the value measures are drawn uniformly at random from the unit simplex, with high probability, the runtime is polynomial in n. [3]

Related Research Articles

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It allows characterizing some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants . The determinant of a matrix A is denoted det(A), det A, or |A|.

An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints are linear.

In game theory, fair division is the problem of dividing a set of resources among several people who have an entitlement to them, such that each person receives their due share. This problem arises in various real-world settings, such as: division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. This is an active research area in mathematics, economics, dispute resolution, and more. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods.

An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

Exact division, also called consensus division, is a partition of a continuous resource ("cake") into some k pieces, such that each of n people with different tastes agree on the value of each of the pieces. For example, consider a cake which is half chocolate and half vanilla. Alice values only the chocolate and George values only the vanilla. The cake is divided into three pieces: one piece contains 20% of the chocolate and 20% of the vanilla, the second contains 50% of the chocolate and 50% of the vanilla, and the third contains the rest of the cake. This is an exact division, as both Alice and George value the three pieces as 20%, 50% and 30% respectively. Several common variants and special cases are known by different terms:

Fair cake-cutting Fair division problem

Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair - each person should receive a piece that he or she believes to be a fair share.

The fair pie-cutting problem is a variation of the fair cake-cutting problem, in which the resource to be divided is circular.

Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:

The Dubins–Spanier theorems are several theorems in the theory of fair cake-cutting. They were published by Lester Dubins and Edwin Spanier in 1961. Although the original motivation for these theorems is fair division, they are in fact general theorems in measure theory.

Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy.

A proportional cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the proportionality criterion, namely, that every partner feels that his allocated share is worth at least 1/n of the total.

Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

In the theory of fair cake-cutting, the Radon–Nikodym set (RNS) is a geometric object that represents a cake, based on how different people evaluate the different parts of the cake.

In the fair cake-cutting problem, the partners often have different entitlements. For example, the resource may belong to two shareholders such that Alice holds 8/13 and George holds 5/13. This leads to the criterion of weighted proportionality (WPR): there are several weights that sum up to 1, and every partner should receive at least a fraction of the resource by their own valuation.

In mathematics, the Samuelson–Berkowitz algorithm efficiently computes the characteristic polynomial of an matrix whose entries may be elements of any unital commutative ring. Unlike the Faddeev–LeVerrier algorithm, it performs no divisions, so may be applied to a wider range of algebraic structures.

Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake.

References

  1. Barbanel, Julius B. (1996-01-01). "Super Envy-Free Cake Division and Independence of Measures". Journal of Mathematical Analysis and Applications. 197 (1): 54–60. doi: 10.1006/S0022-247X(96)90006-2 . ISSN   0022-247X.
  2. Webb, William A. (1999-11-01). "An Algorithm For Super Envy-Free Cake Division". Journal of Mathematical Analysis and Applications. 239 (1): 175–179. doi: 10.1006/jmaa.1999.6581 . ISSN   0022-247X.
  3. Chèze, Guillaume (2020-05-05). "Envy-free cake cutting: A polynomial number of queries with high probability". arXiv: 2005.01982 [cs.CC].