Superplastic forming and diffusion bonding

Last updated

Superplastic forming and diffusion bonding (SPF/DB) is a technique allowing the manufacture of complex-shaped hollow metallic parts. It combines Superplastic forming (SPF) with a second element "Diffusion Bonding" to create the completed structures.

Contents

Principle

Two metal sheets are welded together at their edges, then heated within the confines of a female mould tool.

When the part is hot, an inert gas is injected between the two sheets ; the part becomes hollow to the form of the mould. [1] Parts may be welded in other areas than the edges to give an internal structure as the sheets are blown.

Applications

See also

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal.

In materials science, superplasticity is a state in which solid crystalline material is deformed well beyond its usual breaking point, usually over about 600% during tensile deformation. Such a state is usually achieved at high homologous temperature. Examples of superplastic materials are some fine-grained metals and ceramics. Other non-crystalline materials (amorphous) such as silica glass and polymers also deform similarly, but are not called superplastic, because they are not crystalline; rather, their deformation is often described as Newtonian fluid. Superplastically deformed material gets thinner in a very uniform manner, rather than forming a "neck" that leads to fracture. Also, the formation of microvoids, which is another cause of early fracture, is inhibited.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Airframe</span> Mechanical structure of an aircraft

The mechanical structure of an aircraft is known as the airframe. This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and excludes the propulsion system.

<span class="mw-page-title-main">Powder metallurgy</span> Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.

Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process is one of the simplest methods of joining metals and has been used since ancient times, being a staple of traditional blacksmithing. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical welding and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Sheet metal</span> Metal formed into thin, flat pieces

Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes.

<span class="mw-page-title-main">McDonnell Douglas F-15 STOL/MTD</span> USAF/NASA R&D aircraft

The McDonnell Douglas F-15 STOL/MTD is a modified F-15 Eagle. Developed as a technology demonstrator, the F-15 STOL/MTD carried out research for studying the effects of thrust vectoring and enhanced maneuverability. The aircraft used for the project was pre-production TF-15A (F-15B) No. 1, the first two-seat F-15 Eagle built by McDonnell Douglas, the sixth F-15 off the assembly line, and was the oldest F-15 flying up to its retirement. It was also used as the avionics testbed for the F-15E Strike Eagle program. The plane was on loan to NASA from the United States Air Force.

Dr. Ramulu Mamidala is a mechanical engineering professor at University of Washington. Usually goes by the name 'Ram', or 'M.R.', he is recognized for his leadership and outstanding record in promoting collaborative education and research with industry. He is currently the director of Manufacturing Science and Technology Laboratory (MSTL) at Mechanical Engineering Department, University of Washington. He has designed and developed manufacturing methods for a wide range of systems, from the B2 bomber to the Boeing 787. Additionally, in collaboration with industry, he established and directed two interdisciplinary graduate educational programs in engineering and management and a certificate program in composites tooling and manufacturing. His exemplary collaborative efforts motivated working engineers to pursue doctoral studies and he is a leader in using emerging technologies in distance education to reach non-traditional students.

<span class="mw-page-title-main">Boeing X-53 Active Aeroelastic Wing</span> Experimental aircraft

The X-53 Active Aeroelastic Wing (AAW) development program is a completed American research project that was undertaken jointly by the Air Force Research Laboratory (AFRL), Boeing Phantom Works and NASA's Dryden Flight Research Center, where the technology was flight tested on a modified McDonnell Douglas F/A-18 Hornet. Active Aeroelastic Wing Technology is a technology that integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This program was the first full-scale proof of AAW technology.

<span class="mw-page-title-main">Isogrid</span>

Isogrid is a type of partially hollowed-out structure formed usually from a single metal plate with triangular integral stiffening ribs. It was patented by McDonnell Douglas . It is extremely light and stiff. Compared to other materials, it is expensive to manufacture, and so it is restricted to spaceflight applications and some particularly critical parts of more general aerospace use.

The Chengdu Aircraft Industry Group (CAIG) or Chengdu Aerospace Corporation (CAC), a subsidiary of AVIC, is a Chinese aerospace conglomerate that designs and manufactures combat aircraft and is also a manufacturer of aircraft parts. It was founded in 1958 in Chengdu, Sichuan province to be an aircraft supplier for the Chinese military.

6061 is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

Superplastic forming is an industrial process used for creating precise and complex components out of superplastic materials.

Hot metal gas forming (HMGF) is a method of die forming in which a metal tube is heated to a pliable state, near to but below its melting point, then pressurized internally by a gas in order to form the tube outward into the shape defined by an enclosing die cavity. The high temperatures allow the metal to elongate, or stretch, to much greater degrees without rupture than are possible in previously utilized cold and warm forming methods. In addition, the metal can be formed into finer details and requires less overall forming force than traditional methods.

<span class="mw-page-title-main">Ultrasonic consolidation</span>

Ultrasonic Consolidation (UC) or Ultrasonic Additive Manufacturing (UAM) is a low temperature additive manufacturing or 3D printing technique for metals.

Superforming is a hot metal forming process that uses similar principles to thermoforming plastics, where a sheet of material is heated and forced onto a male or female form using gas pressure. The process is useful for producing complex surfaces. The technique was pioneered for use in alloy fighter jets, with a sheet of aluminum heated like "taffy" and then "blown" into a mold by a press system, allowing complex curves. It heats the sheets to 500 degrees Celsius, and after molding, vacuums out the air.

<span class="mw-page-title-main">Diffusion bonding</span>

Diffusion bonding or diffusion welding is a solid-state welding technique used in metalworking, capable of joining similar and dissimilar metals. It operates on the principle of solid-state diffusion, wherein the atoms of two solid, metallic surfaces intersperse themselves over time. This is typically accomplished at an elevated temperature, approximately 50-75% of the absolute melting temperature of the materials. Diffusion bonding is usually implemented by applying high pressure, in conjunction with necessarily high temperature, to the materials to be welded; the technique is most commonly used to weld "sandwiches" of alternating layers of thin metal foil, and metal wires or filaments. Currently, the diffusion bonding method is widely used in the joining of high-strength and refractory metals within the aerospace and nuclear industries.

References

  1. 1 2 Spittle, Peter. "Gas turbine technology" p508, Rolls-Royce plc , 2003. Retrieved: 13 June 2014.
  2. Sabc. "Airframe in General". F-15E.info. Retrieved 2014-06-13.