Superradiant phase transition

Last updated
Schematic plot of the order parameter of the Dicke transition, which is zero in the normal phase and finite in the superradiant phase. The inset shows the free energy in the normal and superradiant phases Superradiant transition.gif
Schematic plot of the order parameter of the Dicke transition, which is zero in the normal phase and finite in the superradiant phase. The inset shows the free energy in the normal and superradiant phases

In quantum optics, a superradiant phase transition is a phase transition that occurs in a collection of fluorescent emitters (such as atoms), between a state containing few electromagnetic excitations (as in the electromagnetic vacuum) and a superradiant state with many electromagnetic excitations trapped inside the emitters. The superradiant state is made thermodynamically favorable by having strong, coherent interactions between the emitters.

Contents

The superradiant phase transition was originally predicted by the Dicke model of superradiance, which assumes that atoms have only two energetic levels and that these interact with only one mode of the electromagnetic field. [1] [2] The phase transition occurs when the strength of the interaction between the atoms and the field is greater than the energy of the non-interacting part of the system. (This is similar to the case of superconductivity in ferromagnetism, which leads to the dynamic interaction between ferromagnetic atoms and the spontaneous ordering of excitations below the critical temperature.) The collective Lamb shift, relating to the system of atoms interacting with the vacuum fluctuations, becomes comparable to the energies of atoms alone, and the vacuum fluctuations cause the spontaneous self-excitation of matter.

The transition can be readily understood by the use of the Holstein-Primakoff transformation [3] applied to a two-level atom. As a result of this transformation, the atoms become Lorentz harmonic oscillators with frequencies equal to the difference between the energy levels. The whole system then simplifies to a system of interacting harmonic oscillators of atoms, and the field known as Hopfield dielectric which further predicts in the normal state polarons for photons or polaritons. If the interaction with the field is so strong that the system collapses in the harmonic approximation and complex polariton frequencies (soft modes) appear, then the physical system with nonlinear terms of the higher order becomes the system with the Mexican hat-like potential, and will undergo ferroelectric-like phase transition. [4] In this model, the system is mathematically equivalent for one mode of excitation to the Trojan wave packet, when the circularly polarized field intensity corresponds to the electromagnetic coupling constant. Above the critical value, it changes to the unstable motion of the ionization.

The superradiant phase transition was the subject of a wide discussion as to whether or not it is only a result of the simplified model of the matter-field interaction; and if it can occur for the real physical parameters of physical systems (a no-go theorem). [5] [6] However, both the original derivation and the later corrections leading to nonexistence of the transition – due to Thomas–Reiche–Kuhn sum rule canceling for the harmonic oscillator the needed inequality to impossible negativity of the interaction – were based on the assumption that the quantum field operators are commuting numbers, and the atoms do not interact with the static Coulomb forces. This is generally not true like in case of Bohr–van Leeuwen theorem and the classical non-existence of Landau diamagnetism. The negating results were also the consequence of using the simple Quantum Optics models of the electromagnetic field-matter interaction but not the more realistic Condenced Matter models like for example the superconductivity model of the BCS but with the phonons replaced by photons to first obtain the collective polaritons. The return of the transition basically occurs because the inter-atom dipole-dipole or generally the electron-electron Coulomb interactions are never negligible in the condensed and even more in the superradiant matter density regime and the Power-Zienau unitary transformation eliminating the quantum vector potential in the minimum-coupling Hamiltonian transforms the Hamiltonian exactly to the form used when it was discovered and without the square of the vector potential which was later claimed to prevent it. Alternatively within the full quantum mechanics including the electromagnetic field the generalized Bohr–van Leeuwen theorem does not work and the electromagnetic interactions cannot be eliminated while they only change the vector potential coupling to the electric field coupling and alter the effective electrostatic interactions. It can be observed in model systems like Bose–Einstein condensates [7] and artificial atoms. [8] [9]

Theory

Criticality of linearized Jaynes-Cummings model

A superradiant phase transition is formally predicted by the critical behavior of the resonant Jaynes-Cummings model, describing the interaction of only one atom with one mode of the electromagnetic field. Starting from the exact Hamiltonian of the Jaynes-Cummings model at resonance

Applying the Holstein-Primakoff transformation for two spin levels, replacing the spin raising and lowering operators by those for the harmonic oscillators

one gets the Hamiltonian of two coupled harmonic-oscillators:

which readily can be diagonalized. Postulating its normal form

where

one gets the eigenvalue equation

with the solutions

The system collapses when one of the frequencies becomes imaginary, i.e. when

or when the atom-field coupling is stronger than the frequency of the mode and atom oscillators. While there are physically higher terms in the true system, the system in this regime will therefore undergo the phase transition.

Criticality of Jaynes-Cummings model

The simplified Hamiltonian of the Jaynes-Cummings model, neglecting the counter-rotating terms, is

and the energies for the case of zero detuning are

where is the Rabi frequency. One can approximately calculate the canonical partition function

,

where the discrete sum was replaced by the integral.

The normal approach is that the latter integral is calculated by the Gaussian approximation around the maximum of the exponent:

This leads to the critical equation

This has the solution only if

which means that the normal, and the superradiant phase, exist only if the field-atom coupling is significantly stronger than the energy difference between the atom levels. When the condition is fulfilled, the equation gives the solution for the order parameter depending on the inverse of the temperature , which means non-vanishing ordered field mode. Similar considerations can be done in true thermodynamic limit of the infinite number of atoms.

Instability of the classical electrostatic model

The better insight on the nature of the superradiant phase transition as well on the physical value of the critical parameter which must be exceeded in order for the transition to occur may be obtained by studying the classical stability of the system of the charged classical harmonic oscillators in the 3D space interacting only with the electrostatic repulsive forces for example between electrons in the locally harmonic oscillator potential. Despite the original model of the superradiance the quantum electromagnetic field is totally neglected here. The oscillators may be assumed to be placed for example on the cubic lattice with the lattice constant in the analogy to the crystal system of the condensed matter. The worse scenario of the defect of the absence of the two out-of-the-plane motion-stabilizing electrons from the 6-th nearest neighbors of a chosen electron is assumed while the four nearest electrons are first assumed to be rigid in space and producing the anti-harmonic potential in the direction perpendicular to the plane of the all five electrons. The condition of the instability of motion of the chosen electron is that the net potential being the superposition of the harmonic oscillator potential and the quadratically expanded Coulomb potential from the four electrons is negative i.e.

or

Making it artificially quantum by multiplying the numerator and the denominator of the fraction by the one obtains the condition

where

is the square of the dipole transition strength between the ground state and the first excited state of the quantum harmonic oscillator,

is the energy gap between consecutive levels and it is also noticed that

is the spatial density of the oscillators. The condition is almost identical to this obtained in the original discovery of the superradiant phase transition when replacing the harmonic oscillators with two level atoms with the same distance between the energy levels, dipole transition strength, and the density which means that it occurs in the regime when the Coulomb interactions between electrons dominate over locally harmonic oscillatory influence of the atoms. It that sense the free electron gas with is also purely superradiant.

The critical inequality rewritten yet differently

expresses the fact that superradiant phase transition occurs when the frequency of the binding atomic oscillators is lower than so called electron gas plasma frequency.

Related Research Articles

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle in physics, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In quantum mechanics, the energies of cyclotron orbits of charged particles in a uniform magnetic field are quantized to discrete values, called Landau levels. These levels are degenerate, with the number of electrons per level directly proportional to the strength of the applied magnetic field. It is named after the Soviet physicist Lev Landau.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity. Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.

The Mattis–Bardeen theory is a theory that describes the electrodynamic properties of superconductivity. It is commonly applied in the research field of optical spectroscopy on superconductors.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the SI definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.

In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.

The Dicke model is a fundamental model of quantum optics, which describes the interaction between light and matter. In the Dicke model, the light component is described as a single quantum mode, while the matter is described as a set of two-level systems. When the coupling between the light and matter crosses a critical value, the Dicke model shows a mean-field phase transition to a superradiant phase. This transition belongs to the Ising universality class and was realized in cavity quantum electrodynamics experiments. Although the superradiant transition bears some analogy with the lasing instability, these two transitions belong to different universality classes.

References

  1. Hepp, Klaus; Lieb, Elliott H. (1973). "On the superradiant phase transition for Molecules in a Quantized Radiation Field: Dicke Maser Model". Annals of Physics. 76 (2): 360–404. Bibcode:1973AnPhy..76..360H. doi:10.1016/0003-4916(73)90039-0.
  2. Wang, Y. K.; Hioe, F. T (1973). "Phase Transition in the Dicke Model of Superradiance". Physical Review A. 7 (3): 831–836. Bibcode:1973PhRvA...7..831W. doi:10.1103/PhysRevA.7.831.
  3. Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano (2013). "Superradiant phase transitions with three-level systems". Physical Review A. 87 (2): 023813–023813–5. arXiv: 1206.3213 . Bibcode:2013PhRvA..87b3813B. doi:10.1103/PhysRevA.87.023813. S2CID   7999910.
  4. Emaljanov, V. I.; Klimontovicz, Yu. L. (1976). "Appearance of Collective Polarisation as a Result of Phase Transition in an Ensemble of Two-level Atoms Interacting Through Electromagnetic Field". Physics Letters A. 59 (5): 366–368. Bibcode:1976PhLA...59..366E. doi:10.1016/0375-9601(76)90411-4.
  5. Rzążewski, K.; Wódkiewicz, K. T (1975). "Phase Transitions, Two Level Atoms, and the Term". Physical Review Letters. 35 (7): 432–434. Bibcode:1975PhRvL..35..432R. doi:10.1103/PhysRevLett.35.432.
  6. Bialynicki-Birula, Iwo; Rzążewski, Kazimierz (1979). "No-go theorem concerning the superradiant phase transition in atomic systems". Physical Review A. 19 (1): 301–303. Bibcode:1979PhRvA..19..301B. doi:10.1103/PhysRevA.19.301.
  7. Baumann, Kristian; Guerlin, Christine; Brennecke, Ferdinand; Esslinger, Tilman (2010). "Dicke quantum phase transition with a superfluid gas in an optical cavity". Nature. 464 (7293): 1301–1306. arXiv: 0912.3261 . Bibcode:2010Natur.464.1301B. doi:10.1038/nature09009. PMID   20428162. S2CID   205220396.
  8. Zhang, Yuanwei; Lian, Jinling; Liang, J.-Q.; Chen, Gang; Zhang, Chuanwei; Suotang, Jia (2013). "Finite-temperature Dicke phase transition of a Bose-Einstein condensate in an optical cavity". Physical Review A. 87 (1): 013616–013616–6. arXiv: 1202.4125 . Bibcode:2013PhRvA..87a3616Z. doi:10.1103/PhysRevA.87.013616. S2CID   38789923.
  9. Viehmann, Oliver; von Delft, Jan; Marquard, Florian (2011). "Superradiant Phase Transitions and the Standard Description of Circuit QED". Physical Review Letters. 107 (7): 113602–113602–5. arXiv: 1103.4639 . Bibcode:2011PhRvL.107k3602V. doi:10.1103/physrevlett.107.113602. PMID   22026666. S2CID   22747713.