Surface acoustic wave sensor

Last updated

Surface acoustic wave sensors are a class of microelectromechanical systems (MEMS) which rely on the modulation of surface acoustic waves to sense a physical phenomenon. The sensor transduces an input electrical signal into a mechanical wave which, unlike an electrical signal, can be easily influenced by physical phenomena. The device then transduces this wave back into an electrical signal. Changes in amplitude, phase, frequency, or time-delay between the input and output electrical signals can be used to measure the presence of the desired phenomenon. [1] [2] [3]

Contents

Device Layout

Surface Acoustic Wave Sensor Interdigitated Transducer Diagram Surface Acoustic Wave Sensor Interdigitated Transducer Diagram.png
Surface Acoustic Wave Sensor Interdigitated Transducer Diagram

The basic surface acoustic wave device consists of a piezoelectric substrate with an input interdigitated transducer (IDT) on one side of the surface of the substrate, and an output IDT on the other side of the substrate. The space between the IDTs across which the surface acoustic wave propagates is known as the delay line; the signal produced by the input IDT - a physical wave - moves much slower than its associated electromagnetic form, causing a measurable delay.

Device Operation

Surface acoustic wave technology takes advantage of the piezoelectric effect in its operation. Most modern surface acoustic wave sensors use an input interdigitated transducer (IDT) to convert an electrical signal into an acoustic wave.

The sinusoidal electrical input signal creates alternating polarity between the fingers of the interdigitated transducer. Between two adjacent sets of fingers, polarity of the fingers will be switched (e.g. + - +). As a result, the direction of the electric field between two fingers will alternate between adjacent sets of fingers. This creates alternating regions of tensile and compressive strain between fingers of the electrode by the piezoelectric effect, producing a mechanical wave at the surface known as a surface acoustic wave. As fingers on the same side of the device will be at the same level of compression or tension, the space between them---known as the pitch---is the wavelength of the mechanical wave. We can express the synchronous frequency f0 of the device with phase velocity vp and pitch p as:

The synchronous frequency is the natural frequency at which mechanical waves should propagate. Ideally, the input electric signal should be at the synchronous frequency to minimize insertion loss.

As the mechanical wave will propagate in both directions from the input IDT, half of the energy of the waveform will propagate across the delay line in the direction of the output IDT. In some devices, a mechanical absorber or reflector is added between the IDTs and the edges of the substrate to prevent interference patterns or reduce insertion losses, respectively.

The acoustic wave travels across the surface of the device substrate to the other interdigitated transducer, converting the wave back into an electric signal by the piezoelectric effect. Any changes that were made to the mechanical wave will be reflected in the output electric signal. As the characteristics of the surface acoustic wave can be modified by changes in the surface properties of the device substrate, sensors can be designed to quantify any phenomenon which alters these properties. Typically, this is accomplished by the addition of mass to the surface or changing the length of the substrate and the spacing between the fingers.

Inherent Functionality

The structure of the basic surface acoustic wave sensor allows for the phenomena of pressure, strain, torque, temperature, and mass to be sensed. The mechanisms for this are discussed below:

Pressure, Strain, Torque, Temperature

The phenomena of pressure, strain, torque, temperature, and mass can be sensed by the basic device, consisting of two IDTs separated by some distance on the surface of a piezoelectric substrate. These phenomena can all cause a change in length along the surface of the device. A change in length will affect both the spacing between the interdigitated electrodes---altering the pitch---and the spacing between IDTs---altering the delay. This can be sensed as a phase-shift, frequency-shift, or time-delay in the output electrical signal.

The fundamental measurement of a surface acoustic wave sensor is typically strain. When a diaphragm is placed between the environment at a variable pressure and a reference cavity at a fixed pressure, the diaphragm will bend in response to a pressure differential. As the diaphragm bends, the distance along the surface in compression will increase. A surface acoustic wave pressure sensor either replaces the diaphragm with a piezoelectric substrate patterned with interdigitated electrodes or connects a larger diaphragm to the substrate in order to create a measurable strain in the surface acoustic wave device. When measuring Torque, the principle surface strain of the shaft is in the rotating direction is measured, as application to the sensor will cause a deformation of the piezoelectric substrate. A surface acoustic wave temperature sensor can be fashioned from a piezoelectric substrate with a relatively high coefficient of thermal expansion in the direction of the length of the device. Temperature sensing and strain sensing can be combined into a single device in order to deliver temperature compensation of the sensing system.

Due to the ability of Surface Acoustic Wave sensors to operate within electromagnetically noisy environments and in close proximity to magnets it has been found that they can be embedded into electric motors in order to improve control by providing active torque and temperature measurement of the machine rotor shaft. They have also been applied to robotic control systems in order to provide dynamic torque feedback in robot movement reducing jitter.

Mass

The accumulation of mass on the surface of an acoustic wave sensor will affect the surface acoustic wave as it travels across the delay line. The velocity v of a wave traveling through a solid is proportional to the square root of product of the Young's modulus E and the density of the material.

Therefore, the wave velocity will decrease with added mass. This change can be measured by a change in time-delay or phase-shift between input and output signals. Signal attenuation could be measured as well, as the coupling with the additional surface mass will reduce the wave energy. In the case of mass-sensing, as the change in the signal will always be due to an increase in mass from a reference signal of zero additional mass, signal attenuation can be effectively used.

Extended Functionality

The inherent functionality of a surface acoustic wave sensor can be extended by the deposition of a thin film of material across the delay line which is sensitive to the physical phenomena of interest. If a physical phenomenon causes a change in length or mass in the deposited thin film, the surface acoustic wave will be affected by the mechanisms mentioned above. Some extended functionality examples are listed below:

Chemical Vapors

Chemical vapor sensors use the application of a thin film polymer across the delay line which selectively absorbs the gas or gases of interest. An array of such sensors with different polymeric coatings can be used to sense a large range of gases on a single sensor with resolution down to parts per trillion, allowing for the creation of a sensitive "lab on a chip."

Biological Matter

A biologically active layer can be placed between the interdigitated electrodes which contains immobilized antibodies. If the corresponding antigen is present in a sample, the antigen will bind to the antibodies, causing a mass-loading on the device. These sensors can be used to detect bacteria and viruses in samples, as well as to quantify the presence of certain mRNA and proteins.

Humidity

Surface acoustic wave humidity sensors require a thermoelectric cooler in addition to a surface acoustic wave device. The thermoelectric cooler is placed below the surface acoustic wave device. Both are housed in a cavity with an inlet and outlet for gases. By cooling the device, water vapor will tend to condense on the surface of the device, causing a mass-loading.

Ultraviolet Radiation

Surface acoustic wave devices are made sensitive to optical wavelengths through the phenomenon known as acoustic charge transport (ACT), which involves the interaction between a surface acoustic wave and photogenerated charge carriers from a photoconducting layer. Ultraviolet radiation sensors use a thin layer of zinc oxide across the delay line. When exposed to ultraviolet radiation, zinc oxide generates charge carriers which interact with the electric fields produced in the piezoelectric substrate by the traveling surface acoustic wave. [4] This interaction produces measurable decreases in both the velocity and amplitude of the acoustic wave signal.

Magnetic Fields

Ferromagnetic materials (such as iron, nickel, and cobalt) change their physical dimensions in the presence of an applied magnetic field, a property called magnetostriction. The Young's modulus of the material is dependent on ambient magnetic field strength. If a film of magnetostrictive material is deposited in the delay line of a surface acoustic wave sensor, the change in length of the deposited film in response to a change in the magnetic field will stress the underlying substrate. The resulting strain (i.e., the deformation of the surface of the substrate) produces measurable changes in the phase velocity, phase-shift, and time-delay of the acoustic wave signal, providing information about the magnetic field.

Viscosity

Surface acoustic wave devices can be used to measure changes in viscosity of a liquid placed upon it. As the liquid becomes more viscous the resonant frequency of the device will change in correspondence. A network analyser is needed to view the resonant frequency.

Related Research Articles

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press', and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

<span class="mw-page-title-main">Loudspeaker</span> Converts an electrical audio signal into a corresponding sound

A loudspeaker is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A speaker system, also often simply referred to as a speaker or loudspeaker, comprises one or more such speaker drivers, an enclosure, and electrical connections possibly including a crossover network. The speaker driver can be viewed as a linear motor attached to a diaphragm which couples that motor's movement to motion of air, that is, sound. An audio signal, typically from a microphone, recording, or radio broadcast, is amplified electronically to a power level capable of driving that motor in order to reproduce the sound corresponding to the original unamplified electronic signal. This is thus the opposite function to the microphone; indeed the dynamic speaker driver, by far the most common type, is a linear motor in the same basic configuration as the dynamic microphone which uses such a motor in reverse, as a generator.

<span class="mw-page-title-main">Microphone</span> Device that converts sound into an electrical signal

A microphone, colloquially called a mic, or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and public events, motion picture production, live and recorded audio engineering, sound recording, two-way radios, megaphones, and radio and television broadcasting. They are also used in computers and other electronic devices, such as mobile phones, for recording sounds, speech recognition, VoIP, and other purposes, such as ultrasonic sensors or knock sensors.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

An actuator is a component of a machine that produces force, torque, or displacement, usually in a controlled way, when an electrical, pneumatic or hydraulic input is supplied to it in a system. An actuator converts such an input signal into the required form of mechanical energy. It is a type of transducer. In simple terms, it is a "mover".

<span class="mw-page-title-main">Surface acoustic wave</span> Sound wave which travels along the surface of an elastic material

A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

load cell converts a force such as tension, compression, pressure, or torque into a signal that can be measured and standardized. It is a force transducer. As the force applied to the load cell increases, the signal changes proportionally. The most common types of load cells are pneumatic, hydraulic, and strain gauge types for industrial applications. Typical non-electronic bathroom scales are a widespread example of a mechanical displacement indicator where the applied weight (force) is indicated by measuring the deflection of springs supporting the load platform, technically a "load cell".

<span class="mw-page-title-main">Piezoelectric sensor</span> Type of sensor

A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo- is Greek for 'press' or 'squeeze'.

A thin-film bulk acoustic resonator is a device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium. The operation is based on the piezoelectricity of the piezolayer between the electrodes.

<span class="mw-page-title-main">Analog delay line</span> Electronic device

An analog delay line is a network of electrical components connected in cascade, where each individual element creates a time difference between its input and output. It operates on analog signals whose amplitude varies continuously. In the case of a periodic signal, the time difference can be described in terms of a change in the phase of the signal. One example of an analog delay line is a bucket-brigade device.

<span class="mw-page-title-main">Interdigital transducer</span>

An interdigital transducer (IDT) is a device that consists of two interlocking comb-shaped arrays of metallic electrodes. These metallic electrodes are deposited on the surface of a piezoelectric substrate, such as quartz or lithium niobate, to form a periodic structure.

A mechanical amplifier or a mechanical amplifying element is a linkage mechanism that amplifies the magnitude of mechanical quantities such as force, displacement, velocity, acceleration and torque in linear and rotational systems. In some applications, mechanical amplification induced by nature or unintentional oversights in man-made designs can be disastrous, causing situations such as the 1940 Tacoma Narrows Bridge collapse. When employed appropriately, it can help to magnify small mechanical signals for practical applications.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

<span class="mw-page-title-main">Vibration-powered generator</span>

A vibration powered generator is a type of electric generator that converts the kinetic energy from vibration into electrical energy. The vibration may be from sound pressure waves or other ambient vibrations.

Surface acoustic wave gas sensor or surface acoustic wave (SAW) sensors consist of an input transducer, a chemically adsorbent polymer film, and an output transducer on a piezoelectric substrate, which is typically quartz. The input transducer launches an acoustic wave that travels through the chemical film and is detected by the output transducer. SAW devices have been able to detect and distinguish between organophosphates, chlorinated hydrocarbons, ketones, alcohols, aromatic hydrocarbons, saturated hydrocarbons, and water. Such a device made at Sandia National Laboratories runs at a very high frequency, and the velocity and attenuation of the signal are sensitive to the viscoelasticity and mass of the thin film. The SAW device has four channels, each channel consisting of a transmitter and a receiver, separated by a small distance. Three of the four channels have a polymer deposited on the substrate between the transmitter and receiver. The purpose of the polymers is to adsorb chemicals of interest, with different polymers having different affinities for various chemicals. When a target chemical is adsorbed, the mass of the associated polymer increases, causing a slight change in phase of the acoustic signal relative to the reference (fourth) channel, which has no polymer. The SAW device also contains three Application Specific Integrated Circuit chips (ASICs), which contain the electronics to analyze the signals and output a DC voltage signal proportional to the phase shift. The SAW device, containing the transducers and ASICs, is bonded to a piece of quartz glass, which is placed in a leadless chip carrier (LCC). Wire bonds connect the terminals of the leadless chip carrier to the SAW circuits.

<span class="mw-page-title-main">Piezoelectric accelerometer</span> Type of accelerometer

A piezoelectric accelerometer is an accelerometer that employs the piezoelectric effect of certain materials to measure dynamic changes in mechanical variables.

<span class="mw-page-title-main">Mechanical filter</span> Type of signal processing filter

A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.

<span class="mw-page-title-main">MEMS magnetic field sensor</span>

A MEMSmagnetic field sensor is a small-scale microelectromechanical systems (MEMS) device for detecting and measuring magnetic fields (Magnetometer). Many of these operate by detecting effects of the Lorentz force: a change in voltage or resonant frequency may be measured electronically, or a mechanical displacement may be measured optically. Compensation for temperature effects is necessary. Its use as a miniaturized compass may be one such simple example application.

References

  1. Grate, Jay W. (2000). "Acoustic Wave Microsensor Arrays for Vapor Sensing". Chemical Reviews. 100 (7): 2627–2648. doi:10.1021/cr980094j. PMID   11749298.
  2. Thompson, M. H.; Stone, D. C. (1997). Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization. New York: John Wiley and Sons.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. (1997). Acoustic Wave Sensors.Theory, Design, and Physico-Chemical Applications. New York: Academic Press.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Kumar, Sanjeev, Gil-Ho Kim, K. Sreenivas, and R. P. Tandon. ZnO Based Surface Acoustic Wave Ultraviolet Photo Sensor Journal of Electroceramics 22.1-3 (2009): 198-202.