Surface layering

Last updated

Surface layering is a quasi-crystalline structure at the surfaces of otherwise disordered liquids, where atoms or molecules of even the simplest liquid are stratified into well-defined layers parallel to the surface. While in crystalline solids such atomic layers can extend periodically throughout the entire dimension of a crystal, surface layering decays rapidly away from the surface and is limited to just a few near-surface region layers. Another difference between surface layering and crystalline structure is that atoms or molecules of surface-layered liquids are not ordered in-plane, while in crystalline solids they are. [1]

Surface layering was predicted theoretically by Stuart Rice at the University of Chicago in 1983 [2] and has been experimentally discovered by Peter Pershan (Harvard) and his group, working in collaboration with Ben Ocko (Brookhaven) and Moshe Deutsch (Bar-Ilan) in 1995 in elemental liquid mercury [3] and liquid gallium [4] using x-ray reflectivity techniques.

More recently layering has been shown to arise from electronic properties of metallic liquids, rather than thermodynamic variables such as surface tension, since surfaces of low-surface tension metallic liquids such as liquid potassium are layered, [5] while those of dielectric liquids such as water, are not. [6]

Related Research Articles

X-ray absorption fine structure

X-ray absorption fine structure (XAFS) is a specific structure observed in X-ray absorption spectroscopy (XAS). By analyzing the XAFS, information can be acquired on the local structure and on the unoccupied local electronic states.

The λ (lambda) universality class is a group in condensed matter physics. It regroups several systems possessing strong analogies, namely, superfluids, superconductors and smectics. All these systems are expected to belong to the same universality class for the thermodynamic critical properties of the phase transition. While these systems are quite different at the first glance, they all are described by similar formalisms and their typical phase diagrams are identical.

Oleg Sushkov is a professor at the University of New South Wales and a leader in the field of high temperature super-conductors. Educated in Russia in quantum mechanics and nuclear physics, he now teaches in Australia.

Jozef T. Devreese is a Belgian scientist, with a long career in condensed matter physics. He is Professor Emeritus of Theoretical Physics at the Universiteit Antwerpen.

Electron beam ion trap

Electron beam ion trap (EBIT) is an electromagnetic bottle that produces and confines highly charged ions. An EBIT uses an electron beam focused with a powerful magnetic field to ionize atoms to high charge states by successive electron impact.

Picosecond ultrasonics is a type of ultrasonics that uses ultra-high frequency ultrasound generated by ultrashort light pulses. It is a non-destructive technique in which picosecond acoustic pulses penetrate into thin films or nanostructures to reveal internal features such as film thickness as well as cracks, delaminations and voids. It can also be used to probe liquids. The technique is also referred to as picosecond laser ultrasonics or laser picosecond acoustics.

The topological entanglement entropy or topological entropy, usually denoted by γ, is a number characterizing many-body states that possess topological order.

Quantum dimer models were introduced to model the physics of resonating valence bond (RVB) states in lattice spin systems. The only degrees of freedom retained from the motivating spin systems are the valence bonds, represented as dimers which live on the lattice bonds. In typical dimer models, the dimers do not overlap.

DP is a free software package for physicists implementing ab initio linear-response TDDFT in frequency-reciprocal space and on a plane wave basis set. It allows to calculate both dielectric spectra, such as EELS, IXSS and CIXS, and also optical spectra, e.g. optical absorption, reflectivity, refraction index. The systems range from periodic/crystalline solids, to surfaces, clusters, molecules and atoms made of insulators, semiconductors and metal elements. It implements the RPA, the TDLDA or ALDA plus other non-local approximations, including or neglecting local-field effects. It is distributed under the scientific software open-source academic for free license.

Chromium nitride chemical compound

Chromium nitride is a chemical compound of chromium and nitrogen with the formula CrN. It is very hard, and is extremely resistant to corrosion. It is an interstitial compound, with nitrogen atoms occupying the octahedral holes in the chromium lattice: as such, it is not strictly a chromium(III) compound nor does it contain nitride ions (N3−). Chromium forms a second interstitial nitride, dichromium nitride, Cr2N.

Xiao-Gang Wen condensed matter physicist

Xiao-Gang Wen is a Chinese-American physicist. He is a Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His expertise is in condensed matter theory in strongly correlated electronic systems. In Oct. 2016, he was awarded the Oliver E. Buckley Condensed Matter Prize.

David Ceperley American physicist

David Matthew Ceperley is a theoretical physicist in the physics department at the University of Illinois Urbana-Champaign or UIUC. He is a world expert in the area of Quantum Monte Carlo computations, a method of calculation that is generally recognised to provide accurate quantitative results for many-body problems described by quantum mechanics.

Swift heavy ions are a special form of particle radiation for which electronic stopping dominates over nuclear stopping. They are accelerated in particle accelerators to very high energies, typically in the MeV or GeV range and have sufficient energy and mass to penetrate solids on a straight line. In many solids swift heavy ions release sufficient energy to induce permanently modified cylindrical zones, so-called ion tracks. If the irradiation is carried out in an initially crystalline material, ion tracks consist of an amorphous cylinder. Ion tracks can be produced in many amorphizing materials, but not in pure metals, where the high electronic heat conductivity dissipates away the electronic heating before the ion track has time to form.

Spin-polarized electron energy loss spectroscopy or SPEELS is a technique that is mainly used to measure the dispersion relation of the collective excitations, over the whole Brillouin zone.

Resonant inelastic X-ray scattering x-ray spectroscopy technique

Resonant inelastic X-ray scattering (RIXS) is an X-ray spectroscopy technique used to investigate the electronic structure of molecules and materials.

Yambo is a computer software package for studying many-body theory aspects of solids and molecule systems. It calculates the excited state properties of physical systems from first principles, e.g., from quantum mechanics law without the use of empirical data. It is an open-source software released under the GNU General Public License (GPL). However the main development repository is provate and only a subset of the features available in the private repository are cloned into the public repository and thus distributed.

David Robert Nelson American physicist

David R. Nelson is an American physicist, and Arthur K. Solomon Professor of Biophysics, at Harvard University.

Strontium ruthenate chemical compound

Strontium ruthenate (SRO) is an oxide of strontium and ruthenium with the chemical formula Sr2RuO4. It was the first reported perovskite superconductor that did not contain copper. Strontium ruthenate is structurally very similar to the high-temperature cuprate superconductors, and in particular, is almost identical to the lanthanum doped superconductor (La, Sr)2CuO4. However, the transition temperature for the superconducting phase transition is 0.93 K (about 1.5 K for the best sample), which is much lower than the corresponding value for cuprates.

Richard Magee Osgood Junior. is an American applied and pure physicist. He is currently Higgins Professor of Electrical Engineering and Applied Physics at Columbia University.

James (Jim) P. Eisenstein is the Frank J. Roshek Professor of Physics and Applied Physics at the physics department of California Institute of Technology.

References

  1. Croxton, Clive A. (1974). Liquid State Physics–A Statistical Mechanical Introduction. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511753480. ISBN   978-0-511-75348-0.
  2. D’Evelyn, Mark P.; Rice, Stuart A. (1983-04-15). "A study of the liquid–vapor interface of mercury: Computer simulation results". The Journal of Chemical Physics. AIP Publishing. 78 (8): 5081–5095. doi:10.1063/1.445376. ISSN   0021-9606.
  3. Magnussen, O. M.; Ocko, B. M.; Regan, M. J.; Penanen, K.; Pershan, P. S.; Deutsch, M. (1995-05-29). "X-Ray Reflectivity Measurements of Surface Layering in Liquid Mercury". Physical Review Letters. American Physical Society (APS). 74 (22): 4444–4447. doi:10.1103/physrevlett.74.4444. ISSN   0031-9007. PMID   10058508.
  4. Regan, M. J.; Kawamoto, E. H.; Lee, S.; Pershan, P. S.; Maskil, N.; Deutsch, M.; Magnussen, O. M.; Ocko, B. M.; Berman, L. E. (1995-09-25). "Surface Layering in Liquid Gallium: An X-Ray Reflectivity Study" (PDF). Physical Review Letters. American Physical Society (APS). 75 (13): 2498–2501. doi:10.1103/physrevlett.75.2498. ISSN   0031-9007. PMID   10059327.
  5. Shpyrko, Oleg; Huber, Patrick; Grigoriev, Alexei; Pershan, Peter; Ocko, Ben; Tostmann, Holger; Deutsch, Moshe (2003-03-14). "X-ray study of the liquid potassium surface: Structure and capillary wave excitations" (PDF). Physical Review B. American Physical Society (APS). 67 (11): 115405. doi:10.1103/physrevb.67.115405. ISSN   0163-1829. S2CID   17613642.
  6. Shpyrko, Oleg; Fukuto, Masafumi; Pershan, Peter; Ocko, Ben; Kuzmenko, Ivan; Gog, Thomas; Deutsch, Moshe (2004-06-30). "Surface layering of liquids: The role of surface tension". Physical Review B. American Physical Society (APS). 69 (24): 245423. doi:10.1103/physrevb.69.245423. ISSN   1098-0121. S2CID   53491473.