Surflon S-111

Last updated
Perfluorononanoic acid, the predominant compound present in Surflon S-111 Perfluorononanoic acid.svg
Perfluorononanoic acid, the predominant compound present in Surflon S-111

Surflon S-111 (CAS 72968-3-88) is a commercial product consisting of perfluorinated carboxylic acids (PFCAs) in ammonium salt form. It is commonly used as a polymerization aid in the production of fluoropolymers. [1]

Perfluorinated carboxylic acids (PFCAs), or perfluorocarboxylic acids are compounds of the formula CnF(2n+1)CO2H. The simplest example is trifluoroacetic acid. These compounds are organofluorine analogues of ordinary carboxylic acids, but they are stronger by several pKa units and they exhibit great hydrophobic character. Perfluorinated dicarboxylic acids are also known, e.g. C2F4(CO2H)2.

Ammonium cation

The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+
4
. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR+
4
), where one or more hydrogen atoms are replaced by organic groups (indicated by R).

Salt (chemistry) ionic compound

In chemistry, a salt is an ionic compound that can be formed by the neutralization reaction of an acid and a base. Salts are composed of related numbers of cations and anions so that the product is electrically neutral. These component ions can be inorganic, such as chloride (Cl), or organic, such as acetate ; and can be monatomic, such as fluoride (F), or polyatomic, such as sulfate.

The dominant chemical compound is perfluorononanoic acid (PFNA) at 74% by weight, followed by the 11 carbon perfluoroundecanoic acid (20%), and the 13 carbon perfluorotridecanoic acid (5%). [2]

Chemical compound Substance composed of multiple elements

A chemical compound is a chemical substance composed of many identical molecules composed of atoms from more than one element held together by chemical bonds. A chemical element bonded to an identical chemical element is not a chemical compound since only one element, not two different elements, is involved.

Perfluorononanoic acid, or PFNA, is a synthetic perfluorinated carboxylic acid and fluorosurfactant that is also an environmental contaminant found in people and wildlife along with PFOS and PFOA.

Surflon S-111 is synthesized in Japan by oxidizing a mixture of fluorotelomer olefins. [2] Fluorotelomer olefins are synthesized using a telomerization of tetrafluoroethylene taxogens (monomers), [1] [3] followed by an ethylene insertion. [3] The olefin is oxidized, removing one carbon to yield products with an odd number of carbons [2] with even-lengthed fluorocarbon chains plus a carboxylic acid group. As the fluorotelomer olefins are dominated by F(CF2)8CH=CH2, [2] [4] PFNA is the major PFCA product.

Fluorotelomers are fluorocarbon-based oligomers, or telomers, synthesized by telomerization. Some fluorotelomers and fluorotelomer-based compounds are a source of environmentally persistent perfluorinated carboxylic acids such as PFOA and PFNA, while others are under extended investigation.

Telomerization is a radical polymerization reaction where a chain transfer limits the size of the oligomer molecule product—the telomer. Telomerization requires a telogen to react with at least one unsaturated taxogen molecule. Fluorotelomers are an example.

Tetrafluoroethylene (TFE) is a fluoromonomer with chemical formula C2F4. It belongs to the family of fluorocarbons and is the simplest perfluorinated alkene. This gaseous species is used primarily in the industrial preparation of polymers.

Surflon S-111 "is described as Fatty acids, C7-C13, perfluoro, ammonium salts". [2]

See also

Related Research Articles

Alkene unsaturated chemical compound containing one carbon-to-carbon double bond

In organic chemistry, an alkene is an unsaturated hydrocarbon that contains at least one carbon–carbon double bond. The words alkene and olefin are often used interchangeably (see nomenclature section below). Acyclic alkenes, with only one double bond and no other functional groups, known as mono-enes, form a homologous series of hydrocarbons with the general formula CnH2n. Alkenes have two hydrogen atoms fewer than the corresponding alkane (with the same number of carbon atoms). The simplest alkene, ethylene (C2H4), with the International Union of Pure and Applied Chemistry (IUPAC) name ethene, is the organic compound produced on the largest scale industrially. Aromatic compounds are often drawn as cyclic alkenes, but their structure and properties are different and they are not considered to be alkenes.

Carboxylic acid oxoacid having the structure RC(=O)OH, used as a suffix in systematic name formation to denote the –C(=O)OH group including its carbon atom

A carboxylic acid is an organic compound that contains a carboxyl group. The general formula of a carboxylic acid is R–COOH, with R referring to the rest of the molecule. Carboxylic acids occur widely and include the amino acids and acetic acid.

Aldehyde organic compound containing a functional group with the structure −CHO, consisting of a carbonyl center (a carbon double-bonded to oxygen) with the carbon atom also bonded to hydrogen and to an R group, which is any generic alkyl or side chain

An aldehyde is an organic compound containing a functional group with the structure −CHO, consisting of a carbonyl center with the carbon atom also bonded to hydrogen and to an R group, which is any generic alkyl or side chain. The group—without R—is the aldehyde group, also known as the formyl group. Aldehydes are common in organic chemistry, and many fragrances are aldehydes.

A nitrile is any organic compound that has a −C≡N functional group. The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

Perfluorooctanoic acid chemical compound

Perfluorooctanoic acid (PFOA) is a perfluorinated carboxylic acid produced and used worldwide as an industrial surfactant in chemical processes and as a material feedstock, and is known as an emerging health concern and subject of regulatory action and voluntary industrial phase-outs. PFOA is considered a surfactant, or fluorosurfactant, due to its chemical structure consisting of a perfluorinated, n-octyl "tail group" and a carboxylate "head group". The head group can be described as hydrophilic while the fluorocarbon tail is both hydrophobic and lipophobic; The tail group is inert and does not interact strongly with polar or non-polar chemical moieties; the head group is reactive and interacts strongly with polar groups, specifically water. The "tail" is hydrophobic due to being non-polar and lipophobic because fluorocarbons are less susceptible to the London dispersion force than hydrocarbons.

Perfluorooctanesulfonic acid chemical compound

Perfluorooctanesulfonic acid (PFOS) is an anthropogenic fluorosurfactant and global pollutant. PFOS was the key ingredient in Scotchgard, a fabric protector made by 3M, and numerous stain repellents. It was added to Annex B of the Stockholm Convention on Persistent Organic Pollutants in May 2009. PFOS can be synthesized in industrial production or result from the degradation of precursors. PFOS levels that have been detected in wildlife are considered high enough to affect health parameters, and recently higher serum levels of PFOS were found to be associated with increased risk of chronic kidney disease in the general US population. "This association was independent of confounders such as age, sex, race/ethnicity, body mass index, diabetes, hypertension, and serum cholesterol level."

Nitro compound organic compounds that contain one or more nitro functional groups

Nitro compounds are organic compounds that contain one or more nitro functional groups (−NO2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature, being almost invariably produced by nitration reactions starting with nitric acid.

Hydantoin, or glycolylurea, is a heterocyclic organic compound with the formula CH2C(O)NHC(O)NH. It is a colorless solid that arises from the reaction of glycolic acid and urea. It is an oxidized derivative of imidazolidine. In a more general sense, hydantoins can refer to a groups and a class of compounds with the same ring structure as the parent. For example, phenytoin (mentioned below) has two phenyl groups substituted onto the number 5 carbon in a hydantoin molecule.

Ruthenium tetroxide (Ruthenium(VIII) oxide) is the inorganic compound with the formula RuO4. It is a colourless, diamagnetic liquid, but samples are typically black due to impurities. It is volatile. The analogous OsO4 is more widely used and better known. One of the few solvents in which it forms stable solutions is CCl4.

Microwave popcorn

Microwave popcorn is a convenience food consisting of unpopped popcorn in an enhanced, sealed paper bag intended to be heated in a microwave oven. In addition to the dried corn, the bags typically contain cooking oil with sufficient saturated fat to solidify at room temperature, one or more seasonings, and natural or artificial flavorings or both. With the many different flavors, there are many different providers.

Electrosynthesis in chemistry is the synthesis of chemical compounds in an electrochemical cell. The main advantage of electrosynthesis over an ordinary redox reaction is selectivity and yield which result from control of the cell potential. Electrosynthesis is actively studied as a science and also has industrial applications. Electrooxidation has potential for wastewater treatment as well.

Manganese(III) acetate chemical compound

Manganese(III) acetate describes a family of coordination complexes with the approximate formula Mn(O2CCH3)3. All are brown solids, which are soluble in acetic acid and water. These compounds are used in organic synthesis as oxidizing agents.

Fluorosurfactant class of compounds

Fluorosurfactants are synthetic organofluorine chemical compounds that have multiple fluorine atoms. They can be polyfluorinated or fluorocarbon-based (perfluorinated). As surfactants, they are more effective at lowering the surface tension of water than comparable hydrocarbon surfactants. They have a fluorinated "tail" and a hydrophilic "head." Some human-made fluorosurfactants, such as PFOS and PFOA, are persistent organic pollutants and are detected in humans and wildlife.

Fluorotelomer alcohols, or FTOHs, are fluorotelomers with an alcohol functional group. They are volatile precursors to perfluorinated carboxylic acids, such as PFOA and PFNA, and other compounds.

A perfluorinated compound (PFC) per- or polyfluoroalkyl chemical is an organofluorine compound containing only carbon-fluorine bonds and C-C bonds but also other heteroatoms. PFCs, also known as perfluorinated chemicals, have properties that represent a blend of fluorocarbons and the parent functionalized organic species. For example, perfluorooctanoic acid functions as a carboxylic acid but with strongly altered surfactant and hydrophobic characteristics. Fluorosurfactants are ubiquitously used in teflon, water resistant textiles and fire-fighting foam.

Perfluorooctanesulfonamide chemical compound

Perfluorooctanesulfonamide (PFOSA) is a synthetic organofluorine compound. It is a fluorocarbon derivative and a perfluorinated compound, having an eight-carbon chain and a terminal sulfonamide functional group. PFOSA, a persistent organic pollutant, was an ingredient in 3M's former Scotchgard formulation from 1956 until 2003, and the compound was used to repel grease and water in food packaging along with other consumer applications. It breaks down to form perfluorooctane sulfonate (PFOS). The perfluorooctanesulfonyl fluoride-based chemistry that was used to make sulfonamides like PFOSA was phased out by 3M in the United States (US) during 2000–2002 but it has grown in China by other producers.

Perfluorooctanesulfonyl fluoride chemical compound

Perfluorooctanesulfonyl fluoride (POSF) is a synthetic perfluorinated compound with a sulfonyl fluoride functional group. It is used to make perfluorooctanesulfonic acid (PFOS) and PFOS-based compounds. These compounds have a variety of industrial and consumer uses, but POSF-derived substances ultimately degrade to form PFOS.

References

  1. 1 2 PFOA in Norway TA-2354/2007 (PDF). Norwegian Pollution Control Authority. 2007. pp. 74–75. Retrieved 2009-04-06.[ permanent dead link ]
  2. 1 2 3 4 5 Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (January 2006). "Sources, fate and transport of perfluorocarboxylates". Environ Sci Technol. 40 (1): 32–44. doi:10.1021/es0512475. PMID   16433330. Supporting Information (PDF).
  3. 1 2 Lehmler, HJ (Mar 2005). "Synthesis of environmentally relevant fluorinated surfactants—a review". Chemosphere. 58 (11): 1471–96. doi:10.1016/j.chemosphere.2004.11.078. PMID   15694468.
  4. PERFORCE PERFLUORINATED ORGANIC COMPOUNDS IN THE EUROPEAN ENVIRONMENT (PDF). Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam. 2006-09-15. p. 18. Retrieved 2009-02-15.