Surgery structure set

Last updated

In mathematics, the surgery structure set is the basic object in the study of manifolds which are homotopy equivalent to a closed manifold X. It is a concept which helps to answer the question whether two homotopy equivalent manifolds are diffeomorphic (or PL-homeomorphic or homeomorphic). There are different versions of the structure set depending on the category (DIFF, PL or TOP) and whether Whitehead torsion is taken into account or not.

Mathematics field of study

Mathematics includes the study of such topics as quantity, structure, space, and change.

Homotopy deformation

In topology, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In mathematics, a closed manifold is a type of topological space, namely a compact manifold without boundary. In contexts where no boundary is possible, any compact manifold is a closed manifold.

Contents

Definition

Let X be a closed smooth (or PL- or topological) manifold of dimension n. We call two homotopy equivalences from closed manifolds of dimension to () equivalent if there exists a cobordism together with a map such that , and are homotopy equivalences. The structure set is the set of equivalence classes of homotopy equivalences from closed manifolds of dimension n to X. This set has a preferred base point: .

Cobordism (n+1)-dimensional manifold-with-boundary W linking two n-dimensional manifolds M and N, in the sense that the boundary of W consists of M and N

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

There is also a version which takes Whitehead torsion into account. If we require in the definition above the homotopy equivalences F, and to be simple homotopy equivalences then we obtain the simple structure set.

Remarks

Notice that in the definition of resp. is an h-cobordism resp. an s-cobordism. Using the s-cobordism theorem we obtain another description for the simple structure set , provided that n>4: The simple structure set is the set of equivalence classes of homotopy equivalences from closed manifolds of dimension n to X with respect to the following equivalence relation. Two homotopy equivalences (i=0,1) are equivalent if there exists a diffeomorphism (or PL-homeomorphism or homeomorphism) such that is homotopic to .

In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism if the inclusion maps

As long as we are dealing with differential manifolds, there is in general no canonical group structure on . If we deal with topological manifolds, it is possible to endow with a preferred structure of an abelian group (see chapter 18 in the book of Ranicki).

Notice that a manifold M is diffeomorphic (or PL-homeomorphic or homeomorphic) to a closed manifold X if and only if there exists a simple homotopy equivalence whose equivalence class is the base point in . Some care is necessary because it may be possible that a given simple homotopy equivalence is not homotopic to a diffeomorphism (or PL-homeomorphism or homeomorphism) although M and X are diffeomorphic (or PL-homeomorphic or homeomorphic). Therefore, it is also necessary to study the operation of the group of homotopy classes of simple self-equivalences of X on .

The basic tool to compute the simple structure set is the surgery exact sequence.

In the mathematical surgery theory the surgery exact sequence is the main technical tool to calculate the surgery structure set of a compact manifold in dimension . The surgery structure set of a compact -dimensional manifold is a pointed set which classifies -dimensional manifolds within the homotopy type of .

Examples

Topological Spheres: The generalized Poincaré conjecture in the topological category says that only consists of the base point. This conjecture was proved by Smale (n > 4), Freedman (n = 4) and Perelman (n = 3).

In the mathematical area of topology, the Generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere 'is' a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

Exotic Spheres: The classification of exotic spheres by Kervaire and Milnor gives for n > 4 (smooth category).

Related Research Articles

Diffeomorphism isomorphism of smooth manifolds

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are smooth.

Homeomorphism type of mathematical function

In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words ὅμοιος (homoios) = similar or same and μορφή (morphē) = shape, form, introduced to mathematics by Henri Poincaré in 1895.

Low-dimensional topology branch of topology that studies topological spaces of four or fewer dimensions

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. It can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group . These concepts are named after the mathematician J. H. C. Whitehead.

In mathematics, in the sub-field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

In differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure and even if there exists a smooth structure it need not be unique.

Manifold topological space that at each point resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. In this more precise terminology, a manifold is referred to as an n-manifold.

Differentiable manifold manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace which preserves the position of all points in that subspace. A deformation retraction is a mapping which captures the idea of continuously shrinking a space into a subspace.

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor (1961). Originally developed for differentiable manifolds, surgery techniques also apply to PL and topological manifolds.

In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, demanding that a weak, algebraic notion of equivalence imply a stronger, topological notion.

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In mathematics, a cobordism of an (n + 1)-dimensionsal manifold W between its boundary components, two n-manifolds M and M, is called a semi-s-cobordism if the inclusion is a simple homotopy equivalence but the inclusion is not a homotopy equivalence at all.

In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, X has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold M to X matching the fundamental classes and preserving normal bundle information. If the dimension of X is 5 there is then only the algebraic topology surgery obstruction due to C. T. C. Wall to X actually being homotopy equivalent to a closed manifold. Normal maps also apply to the study of the uniqueness of manifold structures within a homotopy type, which was pioneered by Sergei Novikov.

In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data.

In the mathematical field of topology, a manifold M is called topologically rigid if every manifold homotopically equivalent to M is also homeomorphic to M.

References