Sven Koenig (computer scientist)

Last updated
Sven Koenig
Sven koenig.jpg
NationalityGerman
Alma mater Carnegie Mellon University
Scientific career
Fields Artificial Intelligence, Robotics
Institutions University of Southern California
Doctoral advisor Reid Simmons

Sven Koenig is a full professor in computer science at the University of Southern California. He received an M.S. degree in computer science from the University of California at Berkeley in 1991 and a Ph.D. in computer science from Carnegie Mellon University in 1997, advised by Reid Simmons.

Contents

Research

Koenig is an artificial intelligence and robotics researcher who develops techniques for planning and learning under uncertainty and time constraints, both for single agents and teams of agents. His research often combines ideas from artificial intelligence and robotics with ideas from other disciplines, such as decision theory, theoretical computer science, operations research and economics.

Scientific Achievements

In his pre-dissertation work, Koenig applied Markov Decision Processes (MDPs) to artificial intelligence planning. The standard textbook in artificial intelligence, Artificial Intelligence: A Modern Approach (second edition), states "The connection between MDPs and AI planning problems was made first by Sven Koenig (1991), who showed how probabilistic STRIPS operators provide a compact representation for transition models."

Koenig's dissertation on "Goal-Directed Acting with Incomplete Information" describes a robust robot navigation architecture based on partially observable Markov decision process models. His papers on the subject are highly cited due to their pioneering nature and the subsequent wide adoption of probabilistic robot navigation approaches.

After his dissertation, Koenig laid a broad foundation for incremental heuristic search in artificial intelligence with the development of search algorithms such as Lifelong Planning A* (LPA*), D* Lite, Adaptive A* (AA*) and Fringe-Saving A* (FSA*). The ideas behind his incremental heuristic search algorithm D* Lite, for example, have been incorporated by others into a variety of path planning systems in robotics, including Carnegie Mellon University's winning entry in the DARPA Urban Challenge.

Koenig is also known for his work on real-time search, ant robots, probabilistic planning with nonlinear utility functions, development and analysis of robot-navigation methods (goal-directed navigation in unknown terrain, localization, coverage and mapping), agent coordination based on cooperative auctions, and any-angle path planning.

Professional Activities

Koenig was conference co-chair of the 2004 International Conference on Automated Planning and Scheduling (ICAPS), program co-chair of the 2005 International Joint Conference on Autonomous Agents and Multi-Agent Systems and program co-chair of the 2007 and 2008 AAAI Nectar programs. He served or serves on the editorial boards of several artificial intelligence and robotics journals, on the board of directors of the Robotics: Science and Systems Foundation, on the advisory boards of the Journal of Artificial Intelligence Research and Americas School on Agents and Multiagent Systems, and on the steering committees of the International Conference on Automated Planning and Scheduling and the Symposium on Abstraction, Reformulation, and Approximation.

Honors and awards

Koenig is the recipient of an ACM Recognition of Service Award, an NSF CAREER award, an IBM Faculty Partnership Award, a Charles Lee Powell Foundation Award, a Raytheon Faculty Fellowship Award, a Mellon Mentoring Award, a Fulbright Fellowship, the IEEE Computer Science and Engineering Undergraduate Teaching Award, and the Tong Leong Lim Pre-Doctoral Prize from the University of California at Berkeley.

Selected References

S. Koenig. Goal-Directed Acting with Incomplete Information. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1997.

R. Simmons and S. Koenig. Probabilistic Robot Navigation in Partially Observable Environments. In Proceedings of the International Joint Conference on Artificial Intelligence, 1080–1087, 1995.

S. Koenig. Agent-Centered Search. Artificial Intelligence Magazine, 22, (4), 109-131, 2001.

S. Koenig, M. Likhachev and D. Furcy. Lifelong Planning A*. Artificial Intelligence, 155, (1-2), 93-146, 2004.

S. Koenig, M. Likhachev, Y. Liu and D. Furcy. Incremental Heuristic Search in Artificial Intelligence. Artificial Intelligence Magazine, 25, (2), 99-112, 2004.

J. Svennebring and S. Koenig. Building Terrain-Covering Ant Robots. Autonomous Robots, 16, (3), 313-332, 2004.

S. Koenig and M. Likhachev. Fast Replanning for Navigation in Unknown Terrain. Transactions on Robotics, 21, (3), 354-363, 2005.

M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, S. Koenig, A. Kleywegt, C. Tovey, A. Meyerson and S. Jain. Auction-Based Multi-Robot Routing. In Proceedings of the International Conference on Robotics: Science and Systems, 343-350, 2005.

Y. Liu and S. Koenig. Functional Value Iteration for Decision-Theoretic Planning with General Utility Functions. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 1186–1193, 2006.

Related Research Articles

<span class="mw-page-title-main">Allen Newell</span> American cognitive scientist

Allen Newell was an American researcher in computer science and cognitive psychology at the RAND Corporation and at Carnegie Mellon University's School of Computer Science, Tepper School of Business, and Department of Psychology. He contributed to the Information Processing Language (1956) and two of the earliest AI programs, the Logic Theorist (1956) and the General Problem Solver (1957). He was awarded the ACM's A.M. Turing Award along with Herbert A. Simon in 1975 for their contributions to artificial intelligence and the psychology of human cognition.

<span class="mw-page-title-main">Raj Reddy</span> Indian-American computer scientist (born 1937)

Dabbala Rajagopal "Raj" Reddy is an Indian-born American computer scientist and a winner of the Turing Award. He is one of the early pioneers of artificial intelligence and has served on the faculty of Stanford and Carnegie Mellon for over 50 years. He was the founding director of the Robotics Institute at Carnegie Mellon University. He was instrumental in helping to create Rajiv Gandhi University of Knowledge Technologies in India, to cater to the educational needs of the low-income, gifted, rural youth. He is was the founding chairman of International Institute of Information Technology, Hyderabad. He is the first person of Asian origin to receive the Turing Award, in 1994, known as the Nobel Prize of Computer Science, for his work in the field of artificial intelligence.

<span class="mw-page-title-main">Judea Pearl</span> Computer scientist (born 1936)

Judea Pearl is an Israeli-American computer scientist and philosopher, best known for championing the probabilistic approach to artificial intelligence and the development of Bayesian networks. He is also credited for developing a theory of causal and counterfactual inference based on structural models. In 2011, the Association for Computing Machinery (ACM) awarded Pearl with the Turing Award, the highest distinction in computer science, "for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning". He is the author of several books, including the technical Causality: Models, Reasoning and Inference, and The Book of Why, a book on causality aimed at the general public.

In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is an optimization of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states) according to a chosen heuristic. But in beam search, only a predetermined number of best partial solutions are kept as candidates. It is thus a greedy algorithm. Implemented with an unlimited set of candidates, beam search becomes a backtracking algorithm.

<span class="mw-page-title-main">Sebastian Thrun</span> German-American entrepreneur

Sebastian Thrun is a German-American entrepreneur, educator, and computer scientist. He is CEO of Kitty Hawk Corporation, and chairman and co-founder of Udacity. Before that, he was a Google VP and Fellow, a Professor of Computer Science at Stanford University, and before that at Carnegie Mellon University. At Google, he founded Google X and Google's self-driving car team. He is also an adjunct professor at Stanford University and at Georgia Tech.

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software. The word "robot" was introduced to the public by Czech writer Karel Čapek in his play R.U.R., published in 1920. The term "robotics" was coined by Isaac Asimov in his 1941 science fiction short-story "Liar!"

Ekaterini Panagiotou Sycara is a Greek computer scientist. She is an Edward Fredkin Research Professor of Robotics in the Robotics Institute, School of Computer Science at Carnegie Mellon University internationally known for her research in artificial intelligence, particularly in the fields of negotiation, autonomous agents and multi-agent systems. She directs the Advanced Agent-Robotics Technology Lab at Robotics Institute, Carnegie Mellon University. She also serves as academic advisor for PhD students at both Robotics Institute and Tepper School of Business.

Drew McDermott was a professor of Computer Science at Yale University. He was known for his contributions in artificial intelligence and automated planning.

<span class="mw-page-title-main">Jaime Carbonell</span> American computer scientist (1953–2020)

Jaime Guillermo Carbonell was a computer scientist who made seminal contributions to the development of natural language processing tools and technologies. His extensive research in machine translation resulted in the development of several state-of-the-art language translation and artificial intelligence systems. He earned his B.S. degrees in Physics and in Mathematics from MIT in 1975 and did his Ph.D. under Dr. Roger Schank at Yale University in 1979. He joined Carnegie Mellon University as an assistant professor of computer science in 1979 and lived in Pittsburgh from then. He was affiliated with the Language Technologies Institute, Computer Science Department, Machine Learning Department, and Computational Biology Department at Carnegie Mellon.

<span class="mw-page-title-main">Manuela M. Veloso</span> Portuguese-American computer scientist

Manuela Maria Veloso is the Head of J.P. Morgan AI Research & Herbert A. Simon University Professor Emeritus in the School of Computer Science at Carnegie Mellon University, where she was previously Head of the Machine Learning Department. She served as president of Association for the Advancement of Artificial Intelligence (AAAI) until 2014, and the co-founder and a Past President of the RoboCup Federation. She is a fellow of AAAI, Institute of Electrical and Electronics Engineers (IEEE), American Association for the Advancement of Science (AAAS), and Association for Computing Machinery (ACM). She is an international expert in artificial intelligence and robotics.

D* is any one of the following three related incremental search algorithms:

<span class="mw-page-title-main">Any-angle path planning</span> Algorithm to find Euclidean shortest paths

Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. More traditional pathfinding algorithms such as A* either lack in performance or produce jagged, indirect paths.

Incremental heuristic search algorithms combine both incremental and heuristic search to speed up searches of sequences of similar search problems, which is important in domains that are only incompletely known or change dynamically. Incremental search has been studied at least since the late 1960s. Incremental search algorithms reuse information from previous searches to speed up the current search and solve search problems potentially much faster than solving them repeatedly from scratch. Similarly, heuristic search has also been studied at least since the late 1960s.

Ant robotics is a special case of swarm robotics. Swarm robots are simple robots with limited sensing and computational capabilities. This makes it feasible to deploy teams of swarm robots and take advantage of the resulting fault tolerance and parallelism. Swarm robots cannot use conventional planning methods due to their limited sensing and computational capabilities. Thus, their behavior is often driven by local interactions. Ant robots are swarm robots that can communicate via markings, similar to ants that lay and follow pheromone trails. Some ant robots use long-lasting trails. Others use short-lasting trails including heat and alcohol. Others even use virtual trails.

The Symposium on Combinatorial Search (SoCS) in an international conference aimed at bringing together researchers and all others interested in all fields that use combinatorial search, including artificial intelligence, planning, robotics, constraint programming, meta-reasoning, operations research, navigation, and bioinformatics.

<span class="mw-page-title-main">Peter Stone (professor)</span> American professor of Computer science

Peter Stone is an American computer scientist who is the David Bruton Jr. Centennial Professor of Computer Science at the University of Texas at Austin. He is also an Alfred P. Sloan Research Fellow, Guggenheim Fellow, AAAI Fellow, and Fulbright Scholar.

<span class="mw-page-title-main">Shlomo Zilberstein</span>

Shlomo Zilberstein is an Israeli-American computer scientist. He is a Professor of Computer Science and Associate Dean for Research and Engagement in the College of Information and Computer Sciences at the University of Massachusetts, Amherst. He graduated with a B.A. in Computer Science summa cum laude from Technion – Israel Institute of Technology in 1982, and received a Ph.D. in Computer Science from University of California at Berkeley in 1993, advised by Stuart J. Russell. He is known for his contributions to artificial intelligence, anytime algorithms, multi-agent systems, and automated planning and scheduling algorithms, notably within the context of Markov decision processes (MDPs), Partially Observable MDPs (POMDPs), and Decentralized POMDPs (Dec-POMDPs).

LPA* or Lifelong Planning A* is an incremental heuristic search algorithm based on A*. It was first described by Sven Koenig and Maxim Likhachev in 2001.

<span class="mw-page-title-main">Multi-agent pathfinding</span> Pathfinding problem

The problem of Multi-Agent Pathfinding (MAPF) is an instance of multi-agent planning and consists in the computation of collision-free paths for a group of agents from their location to an assigned target. It is an optimization problem, since the aim is to find those paths that optimize a given objective function, usually defined as the number of time steps until all agents reach their goal cells. MAPF is the multi-agent generalization of the pathfinding problem, and it is closely related to the shortest path problem in the context of graph theory.

<span class="mw-page-title-main">Thomas Dean (computer scientist)</span> American computer scientist

Thomas L. Dean is an American computer scientist known for his work in robot planning, probabilistic graphical models, and computational neuroscience. He was one of the first to introduce ideas from operations research and control theory to artificial intelligence. In particular, he introduced the idea of the anytime algorithm and was the first to apply the factored Markov decision process to robotics. He has authored several influential textbooks on artificial intelligence.

References