Swirl valve

Last updated

Swirl valve technology has been developed by Twister BV of the Netherlands primarily for the gas processing market. [1] This technology is similar to the swirl tube [2] and can also be applied for liquid/liquid separation applications such as oil/water separation and for oil degassing. It is currently being used for optimising existing Joule–Thomson (JT-LTS) systems to minimise liquid carryover. The swirl valve is exactly the same as a Joule-Thomson (JT) choke valve, but it enhances the performance of downstream separators for the same pressure drop, by maximising droplet coalescence. The technology can be applied where a low temperature separator is undersized, or when a lower pressure drop over a JT valve is needed with a similar dew pointing performance. It can also be applied for reducing glycol/chemical inhibition liquid mist carry-over problems.

In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. At room temperature, all gases except hydrogen, helium and neon cool upon expansion by the Joule–Thomson process when being throttled through an orifice; these three gases experience the same effect but only at lower temperatures. Most liquids such as hydraulic oils will be warmed by the Joule-Thomson throttling process.

In an internal combustion engine, a choke valve modifies the air pressure in the intake manifold, thereby altering the ratio of fuel and air quantity entering the engine. Choke valves are generally used in naturally aspirated engines with carburetors to supply a richer fuel mixture when starting the engine. Most choke valves in engines are butterfly valves mounted in the manifold upstream from the carburetor jet to produce a higher partial vacuum, which increases the fuel draw.

Related Research Articles

Natural-gas condensate is a low-density mixture of hydrocarbon liquids that are present as gaseous components in the raw natural gas produced from many natural gas fields. Some gas species within the raw natural gas will condense to a liquid state if the temperature is reduced to below the hydrocarbon dew point temperature at a set pressure.

A Cryocooler is a standalone cooler, usually of table-top size. It is used to cool some particular application to cryogenic temperatures. A review is given by Radebaugh. The present Article deals with various types of cryocoolers and is partly based on a paper by De Waele.

The vortex tube, also known as the Ranque-Hilsch vortex tube, is a mechanical device that separates a compressed gas into hot and cold streams. The gas emerging from the "hot" end can reach temperatures of 200 °C, and the gas emerging from the "cold end" can reach −50 °C (−58 °F). It has no moving parts.

Gas lift Raising a fluid by introducing bubbles of gas into the outlet tube

Gas lift or bubble pumps use the artificial lift technique of raising a fluid such as water or oil by introducing bubbles of compressed air, water vapor or other vaporous bubbles into the outlet tube. This has the effect of reducing the hydrostatic pressure in the outlet tube vs. the hydrostatic pressure at the inlet side of the tube.

A Gas-oil separation package (GOSP) is a "package" used in the upstream oil industry. The package is fitted the well head after the choke valve and before the production manifold, and separates the crude oil from sediments, solids and sand and gases and condensates to allow the crude to be pumped on the pipeline.

Vapor-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air-conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems.

Turboexpander

A turboexpander, also referred to as a turbo-expander or an expansion turbine, is a centrifugal or axial-flow turbine, through which a high-pressure gas is expanded to produce work that is often used to drive a compressor or generator.

Artificial lift refers to the use of artificial means to increase the flow of liquids, such as crude oil or water, from a production well. Generally this is achieved by the use of a mechanical device inside the well or by decreasing the weight of the hydrostatic column by injecting gas into the liquid some distance down the well. A newer method called Continuous Belt Transportation (CBT) uses an oil absorbing belt to extract from marginal and idle wells. Artificial lift is needed in wells when there is insufficient pressure in the reservoir to lift the produced fluids to the surface, but often used in naturally flowing wells to increase the flow rate above what would flow naturally. The produced fluid can be oil, water or a mix of oil and water, typically mixed with some amount of gas.

Supercritical fluid chromatography (SFC) is a form of normal phase chromatography that uses a supercritical fluid such as carbon dioxide as the mobile phase. It is used for the analysis and purification of low to moderate molecular weight, thermally labile molecules and can also be used for the separation of chiral compounds. Principles are similar to those of high performance liquid chromatography (HPLC), however SFC typically utilizes carbon dioxide as the mobile phase; therefore the entire chromatographic flow path must be pressurized. Because the supercritical phase represents a state in which liquid and gas properties converge, supercritical fluid chromatography is sometimes called convergence chromatography.

The Twister supersonic separator is a compact tubular device which is used for removing water and/or hydrocarbon dewpointing of natural gas. The principle of operation is similar to the near isentropic Brayton cycle of a turboexpander. The gas is accelerated to supersonic velocities within the tube using a De Laval nozzle and inlet guide vanes spin the gas around an inner-body which creates the "ballerina effect" and centrifugally separates the water and liquids in the tube. Hydrates do not form in the Twister tube due to the very short residence time of the gas in the tube. A secondary separator treats the liquids and slip gas and also acts as a hydrate control vessel. Twister is able to dehydrate to typical pipeline dewpoint specifications and relies on a pressure drop from the inlet of about 25%, dependent on the performance required. The fundamental mathematics behind supersonic separation can be found in the Society of Petroleum Engineers paper entitled "Selective Removal of Water from Supercritical Natural Gas". The closed Twister system enables subsea gas treatment subsea.

A multiphase flow meter is a device used to measure the individual phase flow rates of constituent phases in a given flow where oil, water and gas mixtures are initially co-mingled together during the oil production processes.

An oil production plant is a facility which processes production fluids from oil wells in order to separate out key components and prepare them for export. This is distinct from an oil depot, which does not have processing facilities.

The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:

Supersonic gas separation is a technology to remove one or several gaseous components out of a mixed gas. The process condensates the target components by cooling the gas through expansion in a Laval nozzle and then separates the condensates from the dried gas through an integrated cyclonic gas/liquid separator. The separator is only using a part of the field pressure as energy and has technical and commercial advantages when compared to commonly used conventional technologies.

Air separation

An air separation plant separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases.

Dissolved gas flotation (DGF) systems are used for a variety of applications throughout the world. The process floats solids, oils and other contaminants to the surface of liquids. Once on the surface these contaminants are skimmed off and removed from the liquids. Oil and gas production facilities have used flotation systems to remove oil and solids from their produced and processed water (wastewater) for many years.The relative density of candle wax is 0.93, hence objects made of wax float on water.

A separation process is a method that converts a mixture or solution of chemical substances into two or more distinct product mixtures. At least one of results of the separation is enriched in one or more of the source mixture's constituents. In some cases, a separation may fully divide the mixture into pure constituents. Separations exploit differences in chemical properties or physical properties between the constituents of a mixture.

An oil water separator (OWS) is a piece of equipment used to separate oil and water mixtures into their separate components. There are many different types of oil-water separator. Each has different oil separation capability and are used in different industries. Oil water separators are designed and selected after consideration of oil separation performance parameters and life cycle cost considerations. "Oil" can be taken to mean mineral, vegetable and animal oils, and the many different hydrocarbons.

Compressed air dryers are special types of filter systems that are specifically designed to remove the water that is inherent in compressed air. The process of compressing air raises its temperature and concentrates atmospheric contaminants, primarily water vapor. Consequently, the compressed air is generally at an elevated temperature and 100% relative humidity. As the compressed air cools, water vapor condenses into the tank(s), pipes, hoses and tools that are downstream from the compressor.

References

  1. JPT Online, 6 June 2009. New gas processing technology improves separation efficiency
  2. Gas Cyclones and Swirl Tubes Principles, Design and Operation by A. C. Hoffman and L. E. Stein. ISBN   978-3-540-74694-2