Symplectic cut

Last updated

In mathematics, specifically in symplectic geometry, the symplectic cut is a geometric modification on symplectic manifolds. Its effect is to decompose a given manifold into two pieces. There is an inverse operation, the symplectic sum, that glues two manifolds together into one. The symplectic cut can also be viewed as a generalization of symplectic blow up. The cut was introduced in 1995 by Eugene Lerman, who used it to study the symplectic quotient and other operations on manifolds.

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Symplectic geometry

Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.

In mathematics, a symplectic manifold is a smooth manifold, M, equipped with a closed nondegenerate differential 2-form, ω, called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

Contents

Topological description

Let be any symplectic manifold and

a Hamiltonian on . Let be any regular value of , so that the level set is a smooth manifold. Assume furthermore that is fibered in circles, each of which is an integral curve of the induced Hamiltonian vector field.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field, defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

Under these assumptions, is a manifold with boundary , and one can form a manifold

by collapsing each circle fiber to a point. In other words, is with the subset removed and the boundary collapsed along each circle fiber. The quotient of the boundary is a submanifold of of codimension two, denoted .

In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties.

Similarly, one may form from a manifold , which also contains a copy of . The symplectic cut is the pair of manifolds and .

Sometimes it is useful to view the two halves of the symplectic cut as being joined along their shared submanifold to produce a singular space

For example, this singular space is the central fiber in the symplectic sum regarded as a deformation.

Symplectic description

The preceding description is rather crude; more care is required to keep track of the symplectic structure on the symplectic cut. For this, let be any symplectic manifold. Assume that the circle group acts on in a Hamiltonian way with moment map

Circle group Lie group of complex numbers of unit modulus; topologically a circle

In mathematics, the circle group, denoted by T, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers

Group action (mathematics)

In mathematics, a group action is a formal way of interpreting the manner in which the elements of a group correspond to transformations of some space in a way that preserves the structure of that space. Common examples of spaces that groups act on are sets, vector spaces, and topological spaces. Actions of groups on vector spaces are called representations of the group.

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

This moment map can be viewed as a Hamiltonian function that generates the circle action. The product space , with coordinate on , comes with an induced symplectic form

The group acts on the product in a Hamiltonian way by

with moment map

Let be any real number such that the circle action is free on . Then is a regular value of , and is a manifold.

This manifold contains as a submanifold the set of points with and ; this submanifold is naturally identified with . The complement of the submanifold, which consists of points with , is naturally identified with the product of

and the circle.

The manifold inherits the Hamiltonian circle action, as do its two submanifolds just described. So one may form the symplectic quotient

By construction, it contains as a dense open submanifold; essentially, it compactifies this open manifold with the symplectic quotient

which is a symplectic submanifold of of codimension two.

If is Kähler, then so is the cut space ; however, the embedding of is not an isometry.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.

One constructs , the other half of the symplectic cut, in a symmetric manner. The normal bundles of in the two halves of the cut are opposite each other (meaning symplectically anti-isomorphic). The symplectic sum of and along recovers .

In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding.

The existence of a global Hamiltonian circle action on appears to be a restrictive assumption. However, it is not actually necessary; the cut can be performed under more general hypotheses, such as a local Hamiltonian circle action near (since the cut is a local operation).

Blow up as cut

When a complex manifold is blown up along a submanifold , the blow up locus is replaced by an exceptional divisor and the rest of the manifold is left undisturbed. Topologically, this operation may also be viewed as the removal of an -neighborhood of the blow up locus, followed by the collapse of the boundary by the Hopf map.

Blowing up a symplectic manifold is more subtle, since the symplectic form must be adjusted in a neighborhood of the blow up locus in order to continue smoothly across the exceptional divisor in the blow up. The symplectic cut is an elegant means of making the neighborhood-deletion/boundary-collapse process symplectically rigorous.

As before, let be a symplectic manifold with a Hamiltonian -action with moment map . Assume that the moment map is proper and that it achieves its maximum exactly along a symplectic submanifold of . Assume furthermore that the weights of the isotropy representation of on the normal bundle are all .

Then for small the only critical points in are those on . The symplectic cut , which is formed by deleting a symplectic -neighborhood of and collapsing the boundary, is then the symplectic blow up of along .

Related Research Articles

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, the isoperimetric inequality is a geometric inequality involving the surface area of a set and its volume. In -dimensional space the inequality lower bounds the surface area of a set by its volume ,

In mathematics, the Radon–Nikodym theorem is a result in measure theory. It involves a measurable space on which two σ-finite measures are defined, and . It states that, if , then there is a measurable function , such that for any measurable set ,

In mathematics, concentration of measure is a principle that is applied in measure theory, probability and combinatorics, and has consequences for other fields such as Banach space theory. Informally, it states that "A random variable that depends in a Lipschitz way on many independent variables is essentially constant".

In mathematics and theoretical physics, the induced metric is the metric tensor defined on a submanifold which is calculated from the metric tensor on a larger manifold into which the submanifold is embedded. It may be calculated using the following formula :

In complex analysis, functional analysis and operator theory, a Bergman space is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

In mathematics, there are at least two results known as Weyl's inequality.

In mathematics, specifically in symplectic geometry, the symplectic sum is a geometric modification on symplectic manifolds, which glues two given manifolds into a single new one. It is a symplectic version of connected summation along a submanifold, often called a fiber sum.

Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.

In probability theory, a fractional Poisson process is a stochastic process to model the long-memory dynamics of a stream of counts. The time interval between each pair of consecutive counts follows the non-exponential power-law distribution with parameter , which has physical dimension , where . In other words, fractional Poisson process is non-Markov counting stochastic process which exhibits non-exponential distribution of interarrival times. The fractional Poisson process is a continuous-time process which can be thought of as natural generalization of the well-known Poisson process. Fractional Poisson probability distribution is a new member of discrete probability distributions.

Affine gauge theory is classical gauge theory where gauge fields are affine connections on the tangent bundle over a smooth manifold . For instance, these are gauge theory of dislocations in continuous media when , the generalization of metric-affine gravitation theory when is a world manifold and, in particular, gauge theory of the fifth force.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers.

In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

In mathematics, Wiener's lemma is a well-known identity which relates the asymptotic behaviour of the Fourier coefficients of a Borel measure on the circle to its atomic part. This result admits an analogous statement for measures on the real line. It was first discovered by Norbert Wiener.

References